Data reconstruction at Compass for endusers

Prometeusz Jasinski
Compass Seminar 08.05.09
Aim: Search for new short living states (X) with final states of the outgoing particles. → Invariant mass of X has to be determined.
What do we need to measure?

Invariant masses
What do we need to measure?

Invariant masses

Particles and their kinematical properties in collisions
What do we need to measure?

Invariant masses

Particles and their kinematical properties in collisions

Dynamics best described with Lorentzvectors $(E/p, p)^T$
What do we need to measure?

Invariant masses

Particles and their kinematical properties in collisions

Dynamics best described with Lorentzvectors $(E/p, p)^T$

momentum – energy – mass - charge
What do we need to measure?

Invariant masses

Particles and their kinematical properties in collisions

Dynamics best described with Lorentzvectors \((E/p, p)^T\)

momentum – energy – mass – charge

Determined by:
particle position – particle time – particle speed
Measure the momentum of outgoing charged particles: The Spectrometer

SM1 bending power = 1 Tm
SM2 bending power = 4 Tm
Measure the momentum of outgoing charged particles:
The Spectrometer

Trackers:
- VSAT (very small area trackers)
- SAT (small area trackers)
- LAT (large area trackers)

Measure the momentum of incoming charged particles: The Beam Momentum Station

µ beam: BMS (beam momentum station) at the bending magnet station

Scintillating fibers for track position measurement

hadron beam: no measurement! Exclusivity is just an approximation.
Measure the momentum of the recoiling particles: The Recoil Particle Detector

Measure the momentum of neutral particles: Case they decay into charged particles (V^0)

$V^0 (\Lambda^0 \bar{\Lambda}^0 K^0)$

reconstructed by user measured

$\bar{p} \pi^-$

$p \pi^+$
Measure the momentum of neutral particles: Case they decay into γ's ($\pi^0 \eta$)

π₀ → γ → measured
reconstructed by user

Energy and position in the electromagnetic calorimeters
Measure the momentum of neutral particles: Case they decay into γ's ($\pi^0 \eta$)
Determination of charged particle energies

Energy resolution of ECALs (and HCALs) is too poor for precise energy determination!

Thus we use the energy - momentum relation for energy determination. $E^2 = m^2 c^4 - p^2 c^2$

Particle identification is needed → PDG mass for well known particles is used.
Particle identification for incoming beamparticles:
CEDAR
Incoming beam momentum is fixed
→ the velocity for different masses differs.
→ the cherenkov angles differ.
Particle identification for outgoing charged beamparticles: The RICH Detector

Realized only for the first stage of spectrometer
Mainly for separation of pions, Kaons and protons
Particle identification for outgoing charged beamparticles: The RICH Detector
Particle identification for outgoing charged beamparticles: The RICH Detector

By knowing the beam momentum and the Cherencov cone angle we know the mass but identification of Kaons only possible up to 50 – 60 GeV.
How do we obtain the physical values out of the RAW data (TDC, ADC, position)?

Main steps of the RAW data decoding are provided by the experts of the detectors as a c++ library.
From the RAW data stored on CASTOR tapes to Enduser data stored as mini DSTs

ROOT Framework (library for data treatment, histogramming, fitting, …)
From the RAW data stored on CASTOR tapes to Enduser data stored as mini DSTs

Tracking
Wires - scintillators - foils
TDC

RICH/CEDAR
PMTs
TDC

ECALs
PMTs
SADC

... RAW data

ROOT Framework (library for data treatment, histogramming, fitting, ...)

Database
time calibration
Position ...
From the RAW data stored on CASTOR tapes to Enduser data stored as mini DSTs

- Tracking
 - Wires - scintillators - foils
 - TDC

- RICH/CEDAR
 - PMTs
 - TDC

- ECALs
 - PMTs
 - SADC

- ... RAW data

ROOT Framework

CORAL

- Event reconstruction with decoding library
- Also MC detector signal simulation Containing COOOL for online monitoring

Database

- time calibration
- Position ...

Library for data treatment, histogramming, fitting, ...
From the RAW data stored on CASTOR tapes to Enduser data stored as mini DSTs

ROOT Framework

- **Tracking**
 - Wires - scintillators - foils
 - TDC

- **RICH/CEDAR**
 - PMTs
 - TDC

- **ECALs**
 - PMTs
 - SADC

- ... [RAW data]

CORAL

- Event reconstruction with decoding library
- Also MC detector signal simulation Containing COOOL for online monitoring

Database

- time calibration
- Position ...

PHAST

- mDST creator
- Enduser analysis tool

mDSTs

- Mini Data Storage Tapes
 - Tracks-Vertices-Particles-Charge-
 - ECAL Cluster-Energies-
 - Cherenkov Angles-etc.
The Configuration for the Enduser

ROOT Framework (library for data treatment, histogramming, fitting, ...)

mDSTs
Mini Data Storage Tapes
Tracks-Vertices-Particles-Charge-
ECAL Cluster-Energies-
Cherenkov Angles-etc.

PHAST
mDST creator
Enduser analysis tool

UserEvent
A method called by Phast
Phast transfers Event by Event
User has to treat the data

Histograms - Trees - Graphs
Typical work of an Enduser

• Eventselection:
 mDST-run-spill selection, Triggerselection
Typical work of an Enduser

• **Eventselection:**
 mdST-run-spill selection, Triggerselection

• **Vertexselection:**
 primary/secondary - inside/outside the target
Typical work of an Enduser

- **Event selection:**
 - mDST-run-spill selection, Trigger selection
- **Vertex selection:**
 - primary/secondary – inside/outside the target
Typical work of an Enduser

• **Event selection:**
 mDST-run-spill selection, Trigger selection

• **Vertex selection:**
 primary/secondary – inside/outside the target

• **Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)
Typical work of an Enduser

• **Event selection:**
 mDST-run-spill selection, Trigger selection

• **Vertex selection:**
 primary/secondary – inside/outside the target

• **Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

• **Reconstruction of neutral channels:**
 Search for Cluster with no associated charged tracks
 Computation of Lorentzvectors starting from the vertex
Typical work of an Enduser

- Event selection:
 mDST-run-spill selection, Trigger selection

- Vertex selection:
 primary/secondary – inside/outside the target

- Particle identification:
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

- Reconstruction of neutral channels:
 Search for Cluster with no associated charged tracks
 Computation of Lorentz vectors starting from the vertex

Lot of background due to noisy channels

[Graph showing mass fit and analysis results]
Typical work of an Enduser

- **Event selection:**
 - mDST-run-spill selection, Triggerselection

- **Vertex selection:**
 - primary/secondary - inside/outside the target

- **Particle identification:**
 - Kaon/Pion/Proton/Elektron
 - (muons are usually identified)

- **Reconstruction of neutral channels:**
 - Search for Cluster with no associated charged tracks
 - Computation of Lorentzvectors starting from the vertex

- **Request and combination of Lorentzvectors:**
 - Having a charged track one retrieves a Lorentzvector by definition of the mass of the particle.
Typical work of an Enduser

- **Event selection:**
 mDST-run-spill selection, Trigger selection

- **Vertex selection:**
 primary/secondary - inside/outside the target

- **Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

- **Reconstruction of neutral channels:**
 Search for Cluster with no associated charged tracks
 Computation of Lorentz vectors starting from the vertex

- **Request and combination of Lorentz vectors:**
 Having a charged track one retrieves a Lorentz vector
 by definition of the mass of the particle.

![Invariant mass of π⁺π⁻ system](hist_k0_mass)

<table>
<thead>
<tr>
<th>hist_k0_mass</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4307</td>
<td>0.4948</td>
<td>0.1347</td>
</tr>
</tbody>
</table>
Typical work of an Enduser

- **Eventselection:**
 - mDST-run-spill selection, Triggerselection

- **Vertexselection:**
 - primary/secondary - inside/outside the target

- **Particle identification:**
 - Kaon/Pion/Proton/Elektron
 - (muons are usually identified)

- **Reconstruction of neutral channels:**
 - Search for Cluster with no associated charged tracks
 - Computation of Lorentzvectors starting from the vertex

- **Request and combination of Lorentzvectors:**
 - Having a charged track one retrieves a Lorentzvector by definition of the mass of the particle.

Reduced background due to PID of protons and antiprotons
Typical work of an Enduser

• **Eventselection:**
 mDST-run-spill selection, Triggerselection

• **Vertexselection:**
 primary/secondary – inside/outside the target

• **Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

• **Reconstruction of neutral channels:**
 Search for Cluster with no associated charged tracks
 Computation of Lorentzvectors starting from the vertex

• **Request and combination of Lorentzvectors:**
 Having a charged track one retrieves a Lorentzvector
 by definition of the mass of the particle.

• **Cutselection for background reduction:**
 combinatorial background by particle misidentification,
 other processes
Typical work of an Enduser

• **Eventselection:**
 mDST-run-spill selection, Triggerselection

• **Vertexselection:**
 primary/secondary - inside/outside the target

• **Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

• **Reconstruction of neutral channels:**
 Search for Cluster with no associated charged tracks
 Computation of Lorentzvectors starting from the vertex

• **Request and combination of Lorentzvectors:**
 Having a charged track one retrieves a Lorentzvector
 by definition of the mass of the particle.

• **Cutselection for background reduction:**
 combinatorial background by particle missidentification,
 other processes

• **Computation of invariant masses:**
 Find the short living particles in the mass spectra (Example on the next page)
Typical work of an Enduser

•**Eventselection:**
 mDST-run-spill selection, Triggerselection

•**Vertexselection:**
 primary/secondary – inside/outside the target

•**Particle identification:**
 Kaon/Pion/Proton/Elektron
 (muons are usually identified)

•**Reconstruction of neutral channels:**
 Search for Cluster with no associated charged tracks
 Computation of Lorentzvectors starting from the vertex

•**Request and combination of Lorentzvectors:**
 Having a charged track one retrieves a Lorentzvector
 by definition of the mass of the particle.

•**Cutselection for background reduction:**
 combinatorial background by particle missidentification,
 other processes

•**Computation of invariant masses:**
 Find the short living particles in the mass spectra

•**Comparison with Monte Carlo:**
 Test the code on Monte Carlo data.
 Determine systematic errors and background.
void UserEvent1(PaEvent& e){
 // create a histogram to fill only when this
 // method is called the first time
 static TH1F* mass_hist;
 bool first(true);
 if (first){
 mass_hist = new TH1F("mass_hist", "invariant mass distr", 1000, 0, 5);
 first = false;
 }
 // go through all vertices in this event
 for(int ivertex = 0; ivertex < e.NVertex(); ivertex++){
 const PaVertex& vertex = e.vVertex(ivertex); // copy vertex
 if (!vertex.IsPrimary()) continue; // take only primaries
 if ((-65 < vertex.Z()) && (vertex.Z() < -30)) continue; // only target region
 if (vertex.NOutParticles() != 3) continue; // number of outgoing particles must fit
 // get the indexes of the particles in the vector
 int index_pi1 = vertex.iOutParticle(0);
 int index_pi2 = vertex.iOutParticle(1);
 int index_pi3 = vertex.iOutParticle(2);
 // retrieve the particle themselves
 const PaParticle& particle_pi1 = e.vParticle(index_pi1);
 const PaParticle& particle_pi2 = e.vParticle(index_pi2);
 const PaParticle& particle_pi3 = e.vParticle(index_pi3);
 // calculate the Lorentz vectors in the specific position of the vertex
 TLorentzVector LzVec_pi1 = particle_pi1.ParInVtx(ivertex).LzVec(0.139);
 TLorentzVector LzVec_pi2 = particle_pi2.ParInVtx(ivertex).LzVec(0.139);
 TLorentzVector LzVec_pi3 = particle_pi3.ParInVtx(ivertex).LzVec(0.139);
 mass_hist->Fill((LzVec_pi1+LzVec_pi2+LzVec_pi3).M());
 }
}
Output of UserEvent Analysis

3 outgoing particles assigned with masses of pions

from analysis by haas
Output of UserEvent Analysis

3 outgoing particles assigned with masses of pions

from analysis by haas
Thank you