The COMPASS Recoil Proton Detector
DPG Spring Meeting 2009 Bochum

Johannes Bernhard

Institut für Kernphysik
Johannes-Gutenberg-Universität Mainz

17.03.09

1. Motivation
2. Trigger
3. Calibration
Motivation

Investigation of exotic meson production as well as the search for glueballs

Compass = production experiment, i.e. t-channel production mechanisms:

diffractive scattering and central production
COMPASS spectrometer

- 2 stage spectrometer with large acceptance (± 180 mrad for charged particles, ± 140 mrad for neutrals) and high resolution
- > 300 layers of trackers: Si strip detector, GEMs, MICROMEGAS, Straws, DC, MWPC, ...
- PID w/ RICH up to 50 GeV/c (π / K separation)
- ECAL, HCAL, μ-Filter
Target zone

- π^-/K^- beam
 $E = 189$ GeV
 intensity 5×10^7 per 10s spills with 40s interspill
- 40cm lH_2 target
 (i.e. luminosity $0.15 pb^{-1}$/day)
- Si strip detectors
- veto-system
 (hodoscopes + γ-Veto)
Recoil Proton Detector

1. Proton **PID** via TOF and E_{loss} measurement
2. fast **trigger** on recoil proton

- small e^- and π^- background
- goal: time resolution $\sigma < 350 \text{ ps}$
- layout: 2 cylindr. layers of scint. (120 mm and 775 mm surrounding the target)

-inner ring w/ 12 scintillator slabs (5 mm \times 500 mm BC404, U Mainz)
-outer ring w/ 24 scintillator slabs (10 mm \times 1080 mm, IHEP Protvino)

large dynamical range of the signals due to small attenuation length ($\lambda_{\text{eff}} \approx 70 \text{ cm}$)
RPD Trigger

- no 2nd level trigger, so *fast, efficient* and *pure* trigger necessary
- trigger on slow recoil proton w/ RPD
- identify proton by TOF and E_{loss} meas. (w/ thresholds to cut out e^- and π^\pm)
- coincidence of one ring A element and one out of three possible ring B elements
Calibration I

How to come to proton tracks?

- RPD measures **times** and **hits**
- with effective speed of light \rightarrow hit positions
- combine measurements of TOF and positions to calculate angles and $\beta = \frac{v}{c}$
- no magnetic field around the target \rightarrow no direct p measurement
- combine with E_{loss} meas. to obtain p
- calibration of energy and TOF necessary
Strategy of calibration:

- Test measurements w/ cosmics, \(\mu^- \) and \(e^- \) beam to determine eff. speed of light and MIP pulse spectra (HV settings), also energy cal.
- Online calibration w/ hadron/\(\mu \) on recoil proton signal to set \(\beta \) in the correct range
- Offline calibration w/ elastic and diffractive events for final tuning

![Elastic recoil proton signal (rec. data)](image)
calibration of β with elastic events, determine offsets in time and space from position and slope
Calibration IV

Correct for second order effects like

- vertex offsets due to no point-like beam (RMS ≈ 1 cm)
- energy loss in the target material
COMPASS Recoil Proton Detector and trigger concept was presented

- calibration technique using elastic events
- RPD calibration still ongoing, now using also $3\pi^\pm$ and $5\pi^\pm$ data
- RPD is an important component to analyze diffractive and centrally produced events
- momentum resolution in fixed target experiments not sufficient for missing mass technique → correlation of recoil proton and outgoing particle tracks selects very efficiently exclusive events