Test of the OZI rule and spin alignment measurements with the COMPASS experiment

MENU 2013

Johannes Bernhard1

Institut für Kernphysik Mainz

on behalf of the COMPASS collaboration

October 2nd 2013

1Contact: johannes.bernhard@cern.ch
Production mechanisms at beam energies $\mathcal{O}(100 \text{ GeV})$

- **Resonant (diffractive)**
 - $p_{\text{beam}} \rightarrow X \rightarrow p_{\text{target}} \rightarrow p_{\text{recoil}}$
 - $V \rightarrow t$

- **Non-resonant**
 - $p_{\text{beam}} \rightarrow p_{\text{target}} \rightarrow p_{\text{recoil}}$
 - $V \rightarrow t$

- **Central**
 - $p_{\text{beam}} \rightarrow p_{\text{fast}} \rightarrow p_{\text{target}} \rightarrow p_{\text{recoil}}$
 - $V \rightarrow t_{1,2}$

Try to understand interplay by studying **strangeness transfer** in well-understood vector meson production ("strangeness chemistry"):
- $\phi(1020)$ is close to pure $s\bar{s}$ state
- $\omega(782)$ is close to pure $u\bar{u}/d\bar{d}$ state
Okubo-Zweig-Iizuka rule:
processes with disconnected quark lines suppressed

prediction for $\phi(1020)$ to $\omega(782)$ production ratios:

$$\frac{\sigma(pp \rightarrow \phi X)}{\sigma(pp \rightarrow \omega X)} \simeq \tan^2(\theta - \theta_0) \simeq 4.2 \cdot 10^{-3}$$

- Violation of ratio hints at flavour-neutral exchange processes
The COMPASS spectrometer at CERN

190 GeV/c hadron beam, 75% protons
2 stage high resolution spectrometer with large acceptance

beam PID with CEDAR detectors
particle ID with RICH and Calorimetry

luminosity 0.15 pb$^{-1}$/day

hep-ex/0703049, NIM A 577, 455 (2007)
update in preparation
Event selection of exclusive vector meson production

Study at COMPASS:
Compare $\phi(1020) \rightarrow K^+K^-$ to $\omega(782) \rightarrow \pi^+\pi^-\pi^0$ production

Exclusive events:

<table>
<thead>
<tr>
<th>Calculated beam energy (GeV)</th>
<th>Events / 0.1 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>300</td>
<td>12</td>
</tr>
</tbody>
</table>

COMPASS 2008
$p p \rightarrow p \pi^+\pi^-\pi^0 p$
not acceptance corrected

- All $\pi^+\pi^-\pi^0$
- RPD coplanarity
- ω mass region

Calculated beam energy (GeV)

preliminary
Analysis

Restriction to similar, well-known phase space for both ω and ϕ by cuts on

- longitudinal momentum share: $0.6 < x_F < 0.9$
- momentum transfer: $0.1 \, (\text{GeV}/c)^2 < t' < 1 \, (\text{GeV}/c)^2$
- mass of pV system
 1. $1.8 \, \text{GeV}/c^2 < M(p\omega) < 4.0 \, \text{GeV}/c^2$
 2. $2.1 \, \text{GeV}/c^2 < M(p\phi) < 4.5 \, \text{GeV}/c^2$

Method:

1. Monte-Carlo simulation of apparatus acceptance, correction in t', x_F and M_{pV}
2. fit acceptance corrected invariant mass distributions in x_F bins
3. correct for branching
4. calculate $R = \frac{\text{Number of } \phi}{\text{Number of } \omega}$
Method:
1. Monte-Carlo simulation of apparatus acceptance, correction in t', x_F and M_{pV}
2. fit acceptance corrected invariant mass distributions in x_F bins
3. correct for branching
4. calculate $R = \frac{\text{Number of } \phi}{\text{Number of } \omega}$
Preliminary Results $R_{\phi/\omega}$

Systematic uncertainties:

- background subtraction
- apparatus knowledge (ECAL+RICH efficiencies)
Preliminary Results $R_{\phi/\omega}$

Differential cross section ratio $R_{\phi/\omega}(x_F)$ (preliminary):

<table>
<thead>
<tr>
<th>x_F</th>
<th>$R_{\phi/\omega}$</th>
<th>OZI violation factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6-0.7</td>
<td>0.019</td>
<td>4.5 ± 0.6</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>0.017</td>
<td>4.0 ± 0.5</td>
</tr>
<tr>
<td>0.8-0.9</td>
<td>0.012</td>
<td>2.9 ± 0.4</td>
</tr>
</tbody>
</table>
OZI violation

Observation: Lower violation than found by previous experiments

Investigate mass distribution of $p\nu$ system:

$p\phi$: phase-space-like, no structures
$p\omega$: resonances
cut on vector meson momentum p_V

- independent of ω/ϕ mass differences

<table>
<thead>
<tr>
<th>x_F</th>
<th>$R_{\phi/\omega}$</th>
<th>OZI viol.</th>
<th>$R_{\phi/\omega}$</th>
<th>OZI viol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6-0.7</td>
<td>0.032</td>
<td>7.6 ± 1.0</td>
<td>0.032</td>
<td>7.6 ± 1.0</td>
</tr>
<tr>
<td>0.7-0.8</td>
<td>0.038</td>
<td>9.0 ± 1.1</td>
<td>0.033</td>
<td>7.9 ± 1.1</td>
</tr>
<tr>
<td>0.8-0.9</td>
<td>0.019</td>
<td>4.5 ± 0.6</td>
<td>0.032</td>
<td>7.6 ± 1.0</td>
</tr>
</tbody>
</table>

Preliminary Results $R_{\phi/\omega}$ - II

preliminary!
another handle to distinguish production mechanisms:
cross section linearly parameterised2 in terms of
spin density matrix element ρ_{00}

$$\frac{d\sigma}{d\cos \theta} = \frac{4}{3} \left(1 - \rho_{00} + (3\rho_{00} - 1) \cos^2 \theta \right)$$

$\rho_{00} = 0$ long. alignment, $\rho_{00} = 0.33$ arbitrary alignment, $\rho_{00} = 1$ transverse alignment

Spin Alignment

Spin density matrix has representation depending on reference frame
resonant (diffractive) non-resonant central

- helicity frame: $\hat{z} = |\vec{X}|$ in CM(V) system
 sensitive to diffractive / resonant production
- exchange frame: $\hat{z} = |\vec{p}_{beam} - \vec{p}_{fast}|$
 sensitive to central mechanisms / two particle exchanges
Spin Alignment

another handle to distinguish production mechanisms: cross section linearly parameterised\(^2\) in terms of spin density matrix element \(\rho_{00}\)

\[
\frac{d\sigma}{d\cos \theta} = \frac{4}{3} \left(1 - \rho_{00} + (3\rho_{00} - 1) \cos^2 \theta \right)
\]

\(\omega\), helicity frame:

\(\rho_{00} = 0.289 \pm 0.004\) \(\rho_{00} = 0.33 \pm 0.003\) \(\rho_{00} = 0.449 \pm 0.003\)

Spin Alignment

another handle to distinguish production mechanisms: cross section linearly parameterised\(^2\) in terms of spin density matrix element \(\rho_{00}\)

\[
\frac{d\sigma}{d\cos\theta} = \frac{4}{3} \left(1 - \rho_{00} + (3\rho_{00} - 1) \cos^2\theta \right)
\]

\(\phi\), helicity frame:

\(\rho_{00} = 0.38 \pm 0.03\) \(\rho_{00} = 0.35 \pm 0.02\) \(\rho_{00} = 0.39 \pm 0.04\)

Resonances in the $p\omega$ system

$0.2 < x_F < 0.6$

$0.6 < x_F < 0.7$

$0.7 < x_F < 0.8$

$0.8 < x_F < 0.9$
Helicity frame: scan over $p\omega$ mass

mass range 1.8-3.8 GeV/c2
Exchange frame: Spin alignment ϕ

COMPASS 2008/9

$p p \rightarrow p \phi p$

$0.6 < x_F < 0.7$

$\rho_{00} = 0.51 \pm 0.03$

$0.7 < x_F < 0.8$

$\rho_{00} = 0.58 \pm 0.02$

$0.8 < x_F < 0.9$

$\rho_{00} = 0.67 \pm 0.04$
Exchange frame: Spin alignment ω

- **0.2 < x_F < 0.6**
 - $p\ p \rightarrow p\ \omega\ p$
 - $W(\cos^2 \theta_{EX})$
 - $\rho_{00} = 0.402 \pm 0.002$

- **0.6 < x_F < 0.7**
 - $p\ p \rightarrow p\ \omega\ p$
 - $W(\cos^2 \theta_{EX})$
 - $\rho_{00} = 0.492 \pm 0.003$

- **0.7 < x_F < 0.8**
 - $p\ p \rightarrow p\ \omega\ p$
 - $W(\cos^2 \theta_{EX})$
 - $\rho_{00} = 0.582 \pm 0.002$

- **0.8 < x_F < 0.9**
 - $p\ p \rightarrow p\ \omega\ p$
 - $W(\cos^2 \theta_{EX})$
 - $\rho_{00} = 0.572 \pm 0.002$

COMPASS 2008/9

preliminary
Exchange frame: Spin alignment ω with mass cuts

\begin{align*}
\text{COMPASS 2008/9} & \quad p\ p \rightarrow p\ \omega\ p \\
p_{\omega} > 1 \text{ GeV/c} & \\
0.6 < x_F < 0.7 & \quad \rho_{00} = 0.39 \pm 0.01 \\
\text{Signal} & \\
\text{Sidebands} & \\
\text{COMPASS 2008/9} & \quad p\ p \rightarrow p\ \omega\ p \\
p_{\omega} > 1 \text{ GeV/c} & \\
0.7 < x_F < 0.8 & \quad \rho_{00} = 0.527 \pm 0.005 \\
\text{Signal} & \\
\text{Sidebands} & \\
\text{COMPASS 2008/9} & \quad p\ p \rightarrow p\ \omega\ p \\
p_{\omega} > 1 \text{ GeV/c} & \\
0.8 < x_F < 0.9 & \quad \rho_{00} = 0.577 \pm 0.002 \\
\text{Signal} & \\
\text{Sidebands} & \\
\text{COMPASS 2008/9} & \quad p\ p \rightarrow p\ \omega\ p \\
p_{\omega} > 1.4 \text{ GeV/c} & \\
0.8 < x_F < 0.9 & \quad \rho_{00} = 0.601 \pm 0.005 \\
\text{Signal} & \\
\text{Sidebands} & \\
\end{align*}
Summary

Study of production mechanisms via

1. OZI rule violation / production ratio $R(\phi/\omega)$
2. spin alignment

Results:

- found OZI violation of factor 3-4, low violation due to $p\omega$ resonances
- OZI violation universally 8 when visible $p\omega$ resonances excluded (interestingly, also for low energy measurements near threshold!)
- weak alignment of ϕ mesons, no obvious structures in $p\phi$ mass spectrum due to OZI suppression
- resonances in $p\omega$, sensitivity in helicity frame → diffractive production
- strong sensitivities in exchange frame for ω and ϕ → central production / knock-out
Backup
<table>
<thead>
<tr>
<th>Reaction</th>
<th>x_F</th>
<th>ρ_{00}</th>
<th>Unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow pp\phi$</td>
<td>0.6-0.7</td>
<td>0.38</td>
<td>0.03</td>
</tr>
<tr>
<td>$pp \rightarrow pp\phi$</td>
<td>0.7-0.8</td>
<td>0.35</td>
<td>0.02</td>
</tr>
<tr>
<td>$pp \rightarrow pp\phi$</td>
<td>0.8-0.9</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.2-0.6</td>
<td>0.232</td>
<td>0.003</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.6-0.7</td>
<td>0.289</td>
<td>0.004</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.7-0.8</td>
<td>0.330</td>
<td>0.003</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.8-0.9</td>
<td>0.449</td>
<td>0.003</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.2-0.6</td>
<td>0.30</td>
<td>0.01</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.6-0.7</td>
<td>0.34</td>
<td>0.01</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.7-0.8</td>
<td>0.306</td>
<td>0.006</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.8-0.9</td>
<td>0.463</td>
<td>0.003</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.4$ GeV/c</td>
<td>0.8-0.9</td>
<td>0.37</td>
<td>0.03</td>
</tr>
</tbody>
</table>

helicity frame, preliminary!
<table>
<thead>
<tr>
<th>Reaction</th>
<th>x_F</th>
<th>ρ_{00}</th>
<th>Unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow pp\phi$</td>
<td>0.6-0.9</td>
<td>0.39</td>
<td>0.02</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.2-0.6</td>
<td>0.408</td>
<td>0.002</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.6-0.7</td>
<td>0.492</td>
<td>0.003</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.7-0.8</td>
<td>0.582</td>
<td>0.002</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$</td>
<td>0.8-0.9</td>
<td>0.572</td>
<td>0.002</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.6-0.7</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.7-0.8</td>
<td>0.527</td>
<td>0.005</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.0$ GeV/c</td>
<td>0.8-0.9</td>
<td>0.577</td>
<td>0.002</td>
</tr>
<tr>
<td>$pp \rightarrow pp\omega$, $p_V > 1.4$ GeV/c</td>
<td>0.8-0.9</td>
<td>0.601</td>
<td>0.005</td>
</tr>
</tbody>
</table>

exchange frame, *preliminary!*