GPD measurements at COMPASS II
DPG Dresden 2013
HK 77.6

Nicolas du Fresne von Hohenesche
Institut für Kernphysik, Mainz
on behalf of the COMPASS collaboration

March 7th 2013
Generalised Parton Distributions

Generalised parton distribution for quarks: H^f, E^f, H^f, E^f
Longitudinal momentum distribution
Transverse spatial distribution
Nucleon tomography
3D picture of the nucleon
Deep Virtual Compton Scattering

Hard exclusive photon production

\(\mu p \rightarrow \mu' p' \gamma \)

\[\sigma = \sigma_{BH} + \sigma_{DVCS} + \text{interference term} \]

Bethe-Heitler :

DVCS :

BH calculable
DVCS \(d\sigma_{DVCS} / d|t| \)
Interference \(\text{Re} A_{DVCS} \) and \(\text{Im} A_{DVCS} \)

N. du Fresne GPD at COMPASS II
BH vs. DVCS

- $Q^2 = 2 \text{GeV}^2$, $t = 0.1 \text{GeV}^2$ and 160 GeV μ beam energy

Azimuthal distribution of the photon

Different contributions for different X_B regions
Measuring BH, Interference term and DVCS
Observables

DVCS experiment to constrain GPD H

$$\mu^{+\downarrow}(P = -0.8), \mu^{\uparrow\downarrow}(P = 0.8), \text{unpol. proton target } (\ell \text{ H}_2)$$

- Beam charge & Spin Sum: $S_{CS, U} \equiv d\sigma^{+\downarrow} + d\sigma^{-\uparrow}$
 $$\Rightarrow \text{Im } A^{DVCS, \sigma^{BH}, \sigma^{DVCS}}$$

- Beam charge & Spin Difference: $D_{CS, U} \equiv d\sigma^{+\downarrow} - d\sigma^{-\uparrow}$
 $$\Rightarrow \text{Re } A^{DVCS, \sigma^{DVCS}}$$
Visualization output from TGEANT:

Spill structure: 10s
160 GeV muon $^+\! -\! -$ beam
2012 DVCS Run

6 weeks DVCS run → Measuring t-dependence
Long run in 2015/2016 for more statistics

- New 2.5 m long IH$_2$ target
- New recoil proton detector (CAMERA)
- Good acceptance for photons (Upgrades and ECAL0)
- Extension of trigger acceptance towards higher Q^2 and x_{Bj}
- Well known acceptance
- High precision luminosity determination
- $\frac{1}{3} \mu^+$ and $\frac{2}{3} \mu^-$ data taking
Exclusivity via recoil proton detection
Used for triggering and proton PID

- 2.5 m long IH$_2$ target
- 40 mm diameter
- TOF detector with two layers of scintillator
- good time resolution
- $\frac{dE}{dx}$ measurement
- Readout with board with GHz-Sampler
ECAL 0: Enlarging Photon Acceptance

- Detection of large angle photons
- Sandwich calorimeter
- Lead-scintillator with MAPD readout
Large Angle Spectrometer Trigger

Access large Q^2 and large x_{Bj}
Scintillator trigger hodoscopes consisting of 2 planes (LAST)
Principle of target pointing with coincidence matrix
H1 and H2

H1: 230 cm × 190 cm, 64 channels and 1 cm thick
H2: 500 cm × 420 cm, 128 channels and 2 cm thick
Cross section and Luminosity

\[d^4\sigma \over dQ^2 \, dx \, d\xi \, dt = N \int L \, dt \cdot A \cdot \delta Q^2 \delta x \delta \xi \delta t \cdot \text{corrections} \]

For cross section \(\Rightarrow \) precise luminosity determination

Fixed target experiment: \(L [cm^{-2} s^{-1}] = \text{target density} \times \text{flux} \)

\(\rightarrow \) Random Trigger Method

- Radioactive Source \((^{22}\text{Na})\)
- Coincidence rate \(\approx 3\text{kHz} \) in 2009
- 500 m away from experiment
Random Trigger Method

\[
\text{Flux} = \frac{\text{number of reconstructed beam tracks}}{\text{number of random trigger} \times \text{time gate } \Delta t}
\]

- 2009 DVCS test run (2 weeks)
- Small \(\ell H_2 \) target with 40 cm length
- \(2.5 \cdot 10^7 \) muons per second per spill (\(\mu^+ \))
- Same data quality checks as for physics events

![Graph of Tracks/ns vs Time [ns]](image1)

![Graph of Flux [1/s] vs Spill number](image2)
Systematic Uncertainties

- The statistical errors are small: 2% per spill (12000 spills)
- Systematic uncertainties estimated to 5% for 2009
 - Time gate cut Δt
 - Target density fluctuations
 - Momentum reconstruction efficiency
 - Veto dead time determination

- Integrated luminosity 3.74 pb^{-1}
- Goal: 1-2% for 2012
Summary and Outlook

- GPDs are accessible via hard exclusive photon production
- COMPASS has great potential to study GPDs via DVCS
- Experimental challenges
 - Recoil proton detection
 - Electro-magnetic calorimetry
 - Large Angle Spectrometer Trigger
 - High precision luminosity determination (Random Trigger)
- First measurement of $d\sigma/dt$ in 2012
- Main physics run in 2015/2016

Thanks for the attention