Experimental studies of generalised parton distributions

Eva-Maria Kabuß,
Institut für Kernphysik,
Mainz University

24th Recontres de Blois: Particle Physics and Cosmology
Blois, 27.5. – 1.6.2012

– Physics motivation
– Deeply virtual Compton scattering
– Experimental results
– Future plans
Motivation

D. Mueller, X. Ji, A. Radyushkin, A. Belitsky, …
M. Burkardt, … Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

Slide from V.D. Volker, LANL 2007
Access GPD through hard exclusive reactions

DVCS

- generalised parton distributions for quarks and gluons $H^f, E^f, \tilde{H}^f, \tilde{E}^f(x, \xi, t)$
- limits: $q(x) = H(x, 0, 0)$ normal PDF
 $F(t) = \int dx \ H(x, \xi, t)$ elastic FF
- Factorisation for Q^2 large, $t < 1 \text{ GeV}^2$
- H, \tilde{H} conserve nucleon helicity
 E, \tilde{E} flip nucleon helicity
- H, E refer to unpolarised distributions
 \tilde{H}, \tilde{E} refer to polarised distributions

Ji’s sumrule

$$J^f = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ [H^f(x, \xi, t) + E^f(x, \xi, t)]$$

J^f: total angular momentum contribution of quark f
Experimental challenge

- **interference** of DVCS and Bethe Heitler

\[d\sigma = d\sigma^{BH} + d\sigma^{DVCS} + \text{interference term} \]

- \(d\sigma^{DVCS}\) and interference term related to **Compton form factor** \(\mathcal{H}(\xi, t)\)

- can be used to extract **GPDs**, mainly GPD \(H\) at high energies

\[
\text{Im} \mathcal{H}(\xi, t) \overset{\text{LO}}{=} H(\xi, \xi, t)
\]

\[
\text{Re} \mathcal{H}(\xi, t) \overset{\text{LO}}{=} \mathcal{P} \int_{-1}^{1} dx \, H(x, \xi, t) \frac{1}{x - \xi}
\]

- BH known, control of experiment; DVCS also \(d\sigma^{DVCS}/d|t|\)
Generalised parton distributions

Cross-section (σ) measurement and beam charge difference ($\text{Re} T$) integrate GPDs with $1/(x \pm \xi)$ weight.

Beam or target spin $\Delta \sigma$ contain only $\text{Im} T$, therefore GPDs at $x = \xi$ and $-\xi$.

Lattice Moments

$$= \int x^n H(x, \xi, t) dx$$
Azimuthal angular dependence

- separation of DVCS and BH via ϕ dependence
- e.g. $Q^2 = 2$ GeV2, $|t| = 0.1$ GeV2

BH dominates, excellent reference yield

BH and DVCS compatible, DVCS amplitude from interference

DVCS dominates, study of $d\sigma/d|t|$, difficult at low energies
Parametrisations of GPDs

• predictions with different models

with factorisation: $H(x, \xi, t) \propto q(x)F(t)$

with Regge motivated t dependence: x-t correlation

– idea: core of fast partons, meson cloud at larger distance
 $H(x, 0, t) \propto q(x) \exp(-B|t|)$

– Ansatz: $B = 1/2 \langle b_\perp^2 \rangle = B_0 + 2\alpha' \ln \frac{x_0}{x}$
 (α' slope of Regge trajectory)

– valence quarks: $\alpha' \sim 1 \text{ GeV}^{-2}$ from form factors, gluons: α' small

• analysis of data

 local fits to $\text{Im } H, \text{Re } H$ indep. (M.Guidal)

 global fits: all kinematic bins at the same time, parametrisation of CFF or GPD
 (G.Goldstein, K.Kumericki and D.Müller)

hybrids: local/global fits (H.Moutarde)

neural networks for PDF, work started for GPDs (K.Kumericki and D. Müller)
Nucleon tomography

- GPDs allow simultaneous measurement of longitudinal momentum and transverse spatial structure

\(\xi \to 0: \quad t = -\Delta_{\perp}^2 \) purely transverse and

\[
q^f(x, b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i \Delta_{\perp} \cdot b_{\perp}} H^f(x, 0, -\Delta_{\perp}^2)
\]

- \(b_{\perp} \) distance to center of momentum (\(b \) in figure is \(b_{\perp} \))

\(x \sim 0.003 \quad x \sim 0.03 \quad x \sim 0.3 \)
Experiments

- **JLAB:**
 - DVCS cross sections, asymmetries
 - Hall A:
 - high precision, limited kinematics
 - Hall B:
 - wide kinematics, “limited” precision
 - very different systematics

- **HERMES:**
 - beam charge (BCA) and spin (BSA) asymmetries
 - transverse asymmetries
 - ongoing analysis with recoil detector

- **H1/ZEUS**
 - DVCS cross section, t dependence, beam charge asymmetries
JLAB: Hall A and Hall B

- E00-110: DVCS cross section with unpol. p target, check of factorisation
- E03-116: measurement with d target
- E07-007: “Rosenbluth” sep. of Compton amplitudes

CLAS (E01-113, E06-003): BSA in large kinematic range
- not well described by current modells
- E05-114: TSA with pol. NH$_3$ target

PRL97(2006)262002

PRL100(2008)162002
Results on BCA and BSA: combined 1996-2005 and new 2006-7 data using missing mass technique

- $\cos \phi$ term related to Re H, $\cos 0\phi$ kinematically suppressed
DVCS at H1

DVCS cross section: Q^2, W, t dependence

Nucleon tomography: t slope b related to size of nucleon at low x
Future plans: JLAB12

several experiments planned

- **Hall A: E12-06-114**
 - follow up of E00-110
 - $e^+ p \rightarrow ep\gamma$ at fixed x, several Q^2, several beam energies
 - high precision cross section measurements for t-dependence, $\text{Im} \mathcal{H}$, $\text{Re} \mathcal{H}$

- **Hall B: E12-06-119**
 - follow up of E01-113, E06-003, E05-114
 - large kinematic coverage with CLAS at 11 GeV, high statistics
 - extension to low and high x ($0.1 < x < 0.7$)
 - second phase: polarised NH$_3$ target
 - $\text{BSA}(x, t, Q^2)$, $\text{TSA}(x, t, Q^2)$

- **Hall B: E12-11-003**
 - using CLAS at 11 GeV plus new recoil neutron detector
 - $\text{BSA}(x, t, Q^2)$ in large kinematic range
 - flavour separation of GPD H
Future plans: COMPASS

Exclusive measurements: DVCS and HEMP

Phase 1:
2.5 m lH_2 target
4 m long recoil detector

Phase 2:
transversely pol. target with recoil detector

classified CERN μ^\pm beam

high precision
beam flux and acceptance determination

trigger in large kinematic range

upgrade ECAL1/2
new ECAL0 before SM1
Target and recoil detector

- 2.5 m IH_2, 40 mm diameter
- minimum thickness of cryostat and target cell
- density fluctuations < 3%
- **TOF detector** 2 layers of scintillators
- 300 ps time resolution

- high occupancy due to δ rays
- **Gandalf Project**: 1GHz digitisation of signals to cope with high rate
Electromagnetic calorimeter ECAL0

- **Shashlik modules** (length about 35 cm)
- scintillator lead sandwich with 15 radiation length
- light read-out with wave length shifting fibres
- **avalanche micropixel photo diodes** need temp. stability $\leq 0.2K$
- test at CERN T9 beam and at muon beam

\Rightarrow ok for GPD measurements
- result confirms expectations
- shape in ϕ determined by current photon acceptance in ECAL1/2
- ECAL0 needed for more uniform acceptance in ϕ

\Rightarrow clear DVCS signal observed at $Q^2 > 1$ GeV2, $x_{Bj} > 0.03$
Projected results

- Transverse imaging:
 \[B(x) \sim \frac{1}{2} \langle r_{\perp}^2(x) \rangle \]
 no model dependence

- Azimuthal dependence:
 \[\text{Re}\mathcal{H}, \text{Im}\mathcal{H} \]
 comparison to different models

projections with 2 years of data
\[\varepsilon_{\text{global}} = 10\% \]
\[L = 1222 \text{ pb}^{-1} \]
Summary

● **GPDs** are a new active field (exp. and theor.)

● **DVCS** is the golden channel for GPDs
 in addition hard exclusive meson production

● first round of high statistics experiments at JLAB and DESY

● compelling GPD programm at JLAB12 and CERN

● **COMPASS** will fill the gap between H1/ZEUS and JLAB/HERMES
 – **phase 1**: study of GPD H with unpolarised proton target
 – **phase 2**: study of GPD E with transversely polarised NH$_3$
 – dress rehearsal for phase 1: this autumn
Deeply virtual meson production

\[H_{\rho^0} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} H^u + \frac{1}{3} H^d + \frac{3}{8} H^g \right) , \quad H_\omega = \frac{1}{\sqrt{2}} \left(\frac{2}{3} H^u - \frac{1}{3} H^d + \frac{1}{8} H^g \right) , \quad H_\phi = -\frac{1}{3} H^s - \frac{1}{8} H^g \]

- **cross section measurement:** \(\rho : \omega : \phi \approx 9 : 1 : 2 \) at large \(Q^2 \)

 Vector meson production \((\rho, \omega, \Phi) \Rightarrow H, E \)
 Pseudo-scalar production \((\pi, \eta, \ldots) \Rightarrow \tilde{H}, \tilde{E} \)

- **transversely pol. target asymmetries:** constraint of \(E/H \)

\[A_{UT}(\rho^0) \propto \sqrt{|-t'|} \frac{\text{Im}(E^*H)}{|H|^2} \]

larger effects expected for \(\omega, \rho^+ \)
Towards GPD E

measurements with transversely polarised target

$$D_{CS,T} \equiv d\sigma_T(\mu^{+\downarrow}) - d\sigma_T(\mu^{-\uparrow})$$

$$^{\text{LO}} \propto \sin(\phi - \phi_S)(c_{0T}^I + c_{1T}^I \cos \phi)$$

$$c_{1T}^I \propto \text{Im} \left((2 - x) F_1 E - 4 \frac{1 - x}{2 - x} F_2 H \right)$$

projections with 2 years of data

$\varepsilon_{global} = 10\%$

1.2 m pol. NH$_3$ target ($f=0.26$)

160 GeV, 280 days with ECAL2+ECAL1

with $|t_{min}|=0.10 \ (0.14) \ \text{GeV}^2$