New Measurements of $\Delta G/G$ at COMPASS

Eva-Maria Kabuß, Institut für Kernphysik, Mainz University
on behalf of the COMPASS collaboration

31. May 2006

– Polarised DIS
– COMPASS experiment
– Longitudinal spin structure
– Gluon polarisation
– Summary and outlook
The spin of the nucleon

Naive parton model:

\[\Delta \Sigma = \Delta u_v + \Delta d_v = 1 \]

E155

\[\Delta \Sigma = 0.23 \pm 0.07 \pm 0.19 \]

Gluons important in unpolarized case

\[\Delta G? \]

Complete description: orbital angular momenta

\[S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]
Polarised DIS
Deep inelastic scattering

\[Q^2 = -q^2 \quad x = Q^2 / 2M \nu \]
\[\nu = E - E' \quad y = \nu / E \]
\[z = E_h / \nu \]
\[p_T : \text{hadron transverse momentum} \]
\[D^h_q(x) : \text{fragmentation function} \]
\[(\text{from quark } q \text{ into hadron } h) \]

- **Inclusive cross section**

\[
\frac{d^2\sigma}{d\Omega dE'} \sim \left(c_1 F_1(x, Q^2) + c_2 F_2(x, Q^2) + c_3 g_1(x, Q^2) + c_4 g_2(x, Q^2) \right)
\]

\[F_1, F_2, g_1, g_2 \quad \text{structure functions} \]
Polarised deep inelastic scattering

- absorption of polarised photons (QPM)

\[q(x) = q(x)^+ + q(x)^- \]
\[\Delta q(x) = q(x)^+ - q(x)^- \]

+ quark \(\uparrow \uparrow \) nucleon
- quark \(\downarrow \uparrow \) nucleon

- photon nucleon asymmetry

\[A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum q e_q^2 (q(x)^+ - q(x)^-)}{\sum q e_q^2 (q(x)^+ + q(x)^-)} = \frac{g_1(x)}{F_1(x)} \]

- spin structure function

\[g_1 = \frac{1}{2} \sum q e_q^2 \Delta q(x) = A_1 \cdot \frac{F_2}{2x(1 + R)} \approx \frac{A_\parallel}{D} \cdot \frac{F_2}{2x(1 + R)} \]
COMPASS at CERN
<table>
<thead>
<tr>
<th>Muon beam</th>
<th>Hadron beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluon polarisation</td>
<td>Primakoff scattering</td>
</tr>
<tr>
<td>Polarised quark distributions</td>
<td>Exotic hadrons</td>
</tr>
<tr>
<td>Polarised fragmentation functions</td>
<td>- Glueballs</td>
</tr>
<tr>
<td>Transversity</td>
<td>- Hybrids</td>
</tr>
<tr>
<td>Lambda polarisation</td>
<td>- Multi-quark states</td>
</tr>
<tr>
<td>Vector meson production</td>
<td>Charmed hadrons</td>
</tr>
<tr>
<td>DVCS</td>
<td></td>
</tr>
</tbody>
</table>

Bielefeld, Bochum, Bonn, Burdwan/Calcutta, CERN, Dubna, Erlangen, Freiburg, Lissabon, Mainz, Moscow, Munic, Nagoya, Prague, Protvino, Saclay, Tel Aviv, Turino, Trieste, Warsaw

(28 institutes, 240 physicists)
Muon beam

160 GeV/c
2 \cdot 10^8 \mu/16.8 s
78% polarisation

Spectrometer

- Two stages: SM1 1Tm, SM2 4.5Tm
- Tracking: SciFi, Silicon, MicroMega, GEM, MWPC, Drift, Straws, Driftubes
- PID: RICH, ECAL, HCAL, muon filter
The polarised target

- Reconstructed interaction vertices

- target material: 6LiD
- polarisation: > 50%
- dilution factor: ~ 0.4
- Dynamic Nuclear Polarization
- solenoid field: 2.5 T
- 3He/4He: $T_{\text{min}} \approx 50$ mK
- two 60 cm long target cells with opposite polarisation
- 2006 new solenoid with 180 mrad acceptance
- regular polarisation reversal by field rotation
Method

• to be measured:

\[A_{\parallel} = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \]

• flux normalization:

\[A_{\text{exp}} = \frac{N_u - N_d}{N_u + N_d} \]

• acceptance difference:

Polarisation rotation

• take average asymmetry:

\[\Rightarrow A_{\text{exp}} = \frac{A + A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N_d' - N_u'}{N_u' + N_d'} \right) \]

\[\Rightarrow \ \text{minimization of bias} \]

• experimental asymmetry

\[A_{\text{exp}} = p_\mu \ p_T \ f \ A_{\parallel} \]

\[\frac{p_\mu, \ p_T}{f} \ \text{beam and target polarisation dilution factor} \]
New results on

- inclusive asymmetries
- open charm production
- high p_T hadrons pairs
- Λ polarisation
- exclusive ρ production

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Time</td>
<td>106d</td>
<td>90d</td>
<td>110d</td>
</tr>
<tr>
<td>Preparation</td>
<td>30d</td>
<td>7d</td>
<td>3d</td>
</tr>
<tr>
<td>Integrated luminosity / fb$^{-1}$</td>
<td>1</td>
<td>1.2</td>
<td>\sim 2.4</td>
</tr>
<tr>
<td>(20% for transverse target polarisation)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Longitudinal spin structure
Inclusive asymmetries for $Q^2 > 1 \text{ GeV}^2$

- high statistics A_1 at low x, factor 2–3 improvement (PLB 612(2005) 154)
- xg_1 points at measured Q^2
- NLO QCD fit ($\overline{\text{MS}}$) to world data ($Q^2 = 3 \text{ GeV}^2$)

$$\Delta \Sigma = 0.25 \pm 0.02(\text{stat.}) \pm ?$$
$$\Delta G = 0.4 \pm 0.2(\text{stat.}) \pm ?$$

(error 0.03 without COMPASS data)
Inclusive asymmetries for $Q^2 < 1 \text{ GeV}^2$

- 2002 – 2003 data, COMPASS error 10 times smaller than previous measurement
- A_1^d is compatible with 0 at small x
- more data for $Q^2 < 1 \text{ GeV}^2$ and $Q^2 > 1 \text{ GeV}^2$, semi-inclusive asymmetries
Longitudinal Λ and $\bar{\Lambda}$ polarisation

- Λ polarisation related to spin transfer from struck quark → sensitivity to Δs?
- 2003 data: 31000Λ, $18000 \bar{\Lambda}$ for $Q^2 > 1$ GeV2
- more data from 2004
Hard exclusive ρ^0 production

- large statistics of diffractive ρ, Φ, J/Ψ
- 2.4 M events with ρ^0 from 2002 and 2003
- large range in Q^2 and x
- A_1 for ρ^0 compatible with zero, more data from 2004
- measurement of spin density matrix elements
Gluon polarisation
ΔG/G measurement in DIS

- **Photon gluon fusion**

\[\gamma^* q \rightarrow \mu \mu' G \]

\[A_{\gamma N}^{PGF} = \frac{\int d\hat{s} \Delta \sigma_{PGF} \Delta G(x_g, \hat{s})}{\int d\hat{s} \sigma_{PGF} G(x_g, \hat{s})} \approx \langle a_{LL}^{PGF} \rangle \frac{\Delta G}{G} \]

\[\langle a_{LL}^{PGF} \rangle \text{ analysing power} \]

- **Methods**

 - **Open charm production**
 \[\gamma g \rightarrow c\bar{c} \rightarrow D^0 \rightarrow \pi K \quad \text{BR: 4%} \]
 hard scale: \(m_c^2 \)
 clean channel, limited statistics

 - **High \(p_T \) hadron pairs**
 \[\gamma g \rightarrow q\bar{q} \rightarrow 2 \text{ jets or } H^+H^- \]
 hard scale: \(Q^2 \) or \(\Sigma p_T^2 \)
 oppositely charged hadrons pairs with large \(p_T \) und \(\Delta \Phi \approx \pi \)
Untagged: $D^0 \rightarrow K\pi$

Tagged: $D^* \rightarrow D^0 \pi_{\text{slow}} \rightarrow (K\pi)\pi_{\text{slow}}$

- no decay vertex reconstruction
- Kaon identification by RICH essential
- cut on D^0 kinematics ($z_{D^0}, \cos(\theta)$)
- effective signal: $S_{\text{eff}} = \frac{S}{1 + S/B}$
- weighting method used ($p_{\mu} p_{\text{T}} f a_{\text{LL}} \frac{S}{S+B} \frac{\Delta G}{G}$)

- cut on mass difference $M_{K\pi\pi} - M_{K\pi} - M_{\pi}$
- 3900 D^0 from D^*
- experimental asymmetry $A_{\text{exp}} = p_{\mu} p_{\text{T}} f a_{\text{LL}} \frac{S}{S+B} \frac{\Delta G}{G}$
Extraction of $\Delta G/G$

- $\langle a_{LL}^{PGF} \rangle$ not exactly calculable from data
- MC with AROMA generator
- good description of data distributions by MC
- parametrisation determined with neural net
- preliminary result
 at $\langle x_g \rangle = 0.15$ (RMS: 0.08)
 from 2002–2004

$\Delta G/G = -0.57 \pm 0.41$ (stat)

- systematic error under study
e.g false asymmetries, background asymmetries
High p_T hadron pairs ($Q^2 > 1$ GeV2)

- contributions to experimental asymmetry

\[\frac{A_{||}}{D} = R_{PGF} \left\langle \frac{A_{PLG}^{PGF}}{D} \right\rangle \frac{\Delta G}{G} + \left(R_{QCDC} \left\langle A_{QL}^{QCD} \right\rangle + R_{LO} \left\langle A_{QL}^{LO} \right\rangle \right) A_1^d \]

- Monte Carlo for R, $\left\langle A_{LL} \right\rangle$

- data selection

 Current fragmentation: $x_F > 0.1$ and $z > 0.1$

 Radiative corrections/ photon polarisation: $0.1 < y < 0.9$

 High p_T: $p_{T,1}, p_{T,2} > 0.7$ GeV and $p_{T,1}^2 + p_{T,2}^2 > 2.5$ GeV2
ΔG/G for Q^2 > 1 GeV^2

- 2002/03 data (prelim.)

 \[A_{||}/D = -0.015 \pm 0.080 \text{(stat.)} \pm 0.013 \text{(syst.)} \]

- Monte Carlo sample generated with LEPTO reasonable agreement with data

- additional x cut ⇒ \(A_{d}^{1} \) small, LO and QCDC neglected

- preliminary result:

 \[\langle \frac{A_{LL}^{PGF}}{D} \rangle = -0.75 \pm 0.05 \]

 \[R_{PGF} = 0.33 \pm 0.07, \langle x_g \rangle = 0.13 \text{ (RMS=0.08)} \]

\[\Delta G/G = 0.06 \pm 0.31 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \]

- main contribution to systematic error: false asymmetries

- only 10% of statistics at \(Q^2 > 1 \text{ GeV}^2 \)

- expectation 2002–2004: \(δ(ΔG/G) = 0.22 \)

- improvement by neural net selection studied

- single hadron analysis started
\(\Delta G/G \) for \(Q^2 < 1 \) GeV\(^2\)

- much more statistics (500k events from 2002–2004) but additional background from resolved photon processes
- data selection similar to large \(Q^2 \) but \(0.35 < y < 0.9 \)
- preliminary result with \(\langle D \rangle = 0.64 \)

\[
A_{\parallel}/D = 0.004 \pm 0.013 \text{ (stat.)} \pm 0.003 \text{ (exp.syst.)}
\]

- MC simulation with PYTHIA compared to data (blue points)
Contributions to asymmetry

- LO, low p_T neglected
Estimate of resolved photon contribution

- polarised PDFs in deuteron and photon needed
- polarised photon PDFs are sum of non perturbative and perturbative part
- estimate non perturbative contribution from unpolarised photon PDFs:

\[-q_{\text{VMD}}^\gamma < \Delta q_{\text{VMD}}^\gamma < q_{\text{VMD}}^\gamma\]

- use as contribution to systematic error

Preliminary result

- determination of R_{PGF} and a_{LL} from Monte Carlo
- most sensitive parameters in PYTHIA: k_N^T and k_N^γ

$$\frac{\Delta G}{G}(x_g = 0.085^{+0.07}_{-0.035}, \mu^2 = 3 \text{ GeV}^2) = 0.016 \pm 0.058(\text{stat.}) \pm 0.055(\text{syst.})$$

- systematic error includes exp. syst.(0.014) (mainly false asymmetries), MC syst.(0.052) and estimate of photon contribution (0.013)
\[\Delta G/G \text{ measurements in DIS} \]

\[\int G(x) dx = 2.5 \]

\[\Delta G/G \text{ is small or has a node around } x_g \approx 0.1 \]

HERMES, all \(Q^2 \)

SMC \(Q^2 > 1 \text{ (GeV/c)}^2 \)

COMPASS, \(Q^2 > 1 \text{ (GeV/c)}^2 \) (02-03, prelim)

COMPASS, \(Q^2 < 1 \text{ (GeV/c)}^2 \) (02-04, prelim)

COMPASS, open charm (02-04, prelim)
Summary and outlook

- New results from COMPASS from 2002 – 2004 data
- Gluon polarisation measured with several methods
- New precise data for the longitudinal spin structure function at small x
- Results on ρ meson production, Λ polarisation

Plans:

- data taking continues in 2006, 6LiD for longitudinal polarisation, NH$_3$ for transverse polarisation
- new target solenoid \Rightarrow larger hadron acceptance
- improvement of RICH (electronics, photon detection)
- many other detector upgrades

\Rightarrow we hope to double the statistics for most channels