COMPASS - a facility to study QCD

Eva-Maria Kabuß,
Institut für Kernphysik,
Mainz University
for the COMPASS collaboration

Hadron 2011
München, 13.-17.11.2011

– COMPASS experiment
– What we have done
– What we want to do
What have we done

COMPASS is data taking since 2002 studying

Nucleon spin puzzle: \(S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \)

- muon scattering on polarised \(p(\text{NH}_3) \) and \(d(\text{LiD}) \) with long. and transv. target polarisation
- addendum in 2010 (transv. p) and 2011 (long. p)
- all three leading twist PDFs investigated \((f_1, g_1, h_1) \)

Results: quark spin responsible for 30% of nucleon spin
- gluon contribution small in \(x \) range covered
- hardly any information on orbital angular momentum

Hadron spectroscopy

- 190 GeV/\(c \) hadron beams \((\pi, p, K) \) on unpol. targets \((\text{liquid } \text{H}_2, \text{Pb}, \text{Ni}, \text{Cu}, \text{W}) \)
- searches for exotics, hybrids and glueballs
- pion polarisabilities
What will we do

Improve the 1-dimensional picture of the nucleon

Generalized parton distribution (GPD)
longitudinal momentum structure plus transverse spatial structure accessible in exclusive reaction like DVCS or DVMP

Flavour separation and fragmentation
in semi-inclusive deep inelastic scattering (SIDIS)
 improvement of strange quark distribution and fragmentation

Transverse momentum dependent distributions (TMD)
dynamic picture using intrinsic transverse momenta of partons accessible in SIDIS and Drell-Yan processes

QCD at very low momentum transfers
using Primakoff reactions to access inverse Compton scattering pion/kaon polarisabilities, testing chiral perturbation theory

COMPASS II proposal:
submitted in May 2010 for 5 years of data taking in the first phase
approved in December 2010 for initially 3 years of data taking
SPS proton beam:
- Secondary hadron beams ($\pi, K, ...$): 2.10^8 /spill, 150-270 GeV/c
- Tertiary muon beam (80% pol): 2.10^8 /spill, 100-200 GeV/c

\rightarrow Luminosity $\sim 5 \times 10^{32}$ cm$^{-2}$ s$^{-1}$ with polarised targets
SPS proton beam:
- Secondary hadron beams (π, K, ...): 2 \times 10^8 /spill, 150-270 GeV/c
- Tertiary muon beam (80% pol): 2 \times 10^8 /spill, 100-200 GeV/c

\[\text{→ Luminosity } \sim 5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \text{ with polarised targets} \]
Polarised target

target material: 6LiD, NH$_3$

polarisation: 50%, 90%

E. Kabuß, Munich, 14.6.2011
Primakoff experiments with π, K

\[\pi^- Z \rightarrow \pi^- Z \gamma \]

chiral perturbation theory predicts low energy behaviour

\[
\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \left[\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} \right]_{\text{point}} + C \cdot \frac{s - m_{\pi}^2}{s^2} P(\alpha_{\pi}, \beta_{\pi})
\]

\[P(\alpha_{\pi}, \beta_{\pi}) = (1 - \cos \theta_{cm})^2 (\alpha_\pi - \beta_\pi) + (1 + \cos \theta_{cm})^2 (\alpha_\pi + \beta_\pi) \frac{s^2}{m_{\pi}^4}
\]

\[+ (1 - \cos \theta_{cm})^3 (\alpha_2 - \beta_2) \frac{(s - m_{\pi}^2)^2}{24s} \]

- deviation from pointlike due to pion polarisabilities
- measurements: $\alpha_{\pi} - \beta_{\pi}$ (at backward angles), $\alpha_{\pi} + \beta_{\pi}$

2-loop chiral prediction

\[\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3 \]

experiments: $\alpha_{\pi} - \beta_{\pi}$ from 4 to 14×10^{-4} fm3
Pion polarisability measurement

- effect increases with s^2
- effects due to $\alpha_\pi - \beta_\pi$ much larger than for $\alpha_\pi + \beta_\pi$

unique at Compass:
- kaon component in hadron beam: kaon polarisability accessible
- availability of a muon beam (point like) for comparison and systematics
- switching between pion and muon beam within few hours possible
Projections for polarisabilities

- already two (test) measurements performed, clear signal from Primakoff events

- expected precision of the new measurement:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha_\pi - \beta_\pi) (10^{-4}) fm(^3)</th>
<th>(\alpha_\pi + \beta_\pi) (10^{-4}) fm(^3)</th>
<th>(\alpha_2 - \beta_2) (10^{-4}) fm(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>in 120 d</td>
<td>(5.70 \pm 1.0)</td>
<td>(0.16 \pm 0.10)</td>
<td>(16)</td>
</tr>
<tr>
<td>90 d with (\pi), 30 d of (\mu) beam</td>
<td>(\pm 0.66)</td>
<td>(\pm 0.25)</td>
<td>(\pm 1.94)</td>
</tr>
<tr>
<td>2-loop ChPT prediction</td>
<td>(5.70 \pm 1.0)</td>
<td>(0.16 \pm 0.10)</td>
<td>(16)</td>
</tr>
<tr>
<td>COMPASS sensitivity</td>
<td>(\pm 0.66)</td>
<td>(\pm 0.25)</td>
<td>(\pm 1.94)</td>
</tr>
</tbody>
</table>
Generalised parton distributions

Factorisation for Q^2 large, $t < 1 \text{ GeV}^2$

- generalised parton distributions for quarks $H^f, E^f, \tilde{H}^f, \tilde{E}^f(x, \xi, t)$

- limits:
 $q(x) = H(x, 0, 0)$
 $F(t) = \int dx \ H(x, \xi, t)$

- Ji’s sumrule

$$J^f = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ [H^f(x, \xi, t) + E^f(x, \xi, t)]$$

J^f: total angular momentum contribution of quark f
Nucleon tomography

- GPDs allow simultaneous measurement of longitudinal momentum and transverse spatial structure

\[q^f(x, b_\perp) = \int \frac{d^2 \Delta_\perp}{(2\pi)^2} e^{-i \Delta_\perp \cdot b_\perp} H^f(x, 0, -\Delta_\perp^2) \]

- for \(\xi \to 0 \): \(t = -\Delta_\perp^2 \) purely transverse and

- \(b_\perp \) distance to center of momentum (\(b \) in figure is \(b_\perp \))
Why GPDs at COMPASS?

- **CERN high energy muon beam:**
 - 100–160 GeV, 80% polarisation
 - μ^+ and μ^- with opposite polarisation

- **unique kinematic range**
 between HERA and HERMES/JLab
 - intermediate x: \Rightarrow sea and valence quarks
 - high x limit from acceptance
 - Q^2 up to 8GeV^2
 \Rightarrow limit from cross section
 with $L = 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

- **planned measurements:**
 - deeply virtual Compton scattering
 - deeply virtual meson production

Phase 1: 2.5 m long unpolarised liquid H$_2$ target \Rightarrow GPD H
Phase 2: transversely polarised liquid NH$_3$ target \Rightarrow GPD E

E. Kabuš, Munich, 14.6.2011
Experimental requirements

- two competing processes: DVCS and BH
- Bethe-Heitler dominates at low x
- used a reference yield
- measurement with μ^+ and μ^- with opposite polarisation

 $$S_{CS,U} \equiv d\sigma_{+\downarrow} + d\sigma_{-\uparrow}$$

 $$D_{CS,U} \equiv d\sigma_{+\downarrow} - d\sigma_{-\uparrow}$$

- yield Re(H) and Im(H)
- additionally deeply virtual meson production

Experimental set-up

- 2.5 m long liquid hydrogen target
- 4 m long recoil proton detector (2 layers)
- ’hermetic’ coverage with electromagnetic calorimetry
Test measurement 2009

- data taking with μ^+ (8 times more stat.) and μ^- at about nominal intensity
- 40 cm liquid H$_2$ target and small recoil proton detector
- measure BH events plus relative DVCS and DVMP contributions
- comparison of μ^+ and μ^- data: μ^- flux is factor of 3 lower at 160 GeV \implies limitation on overall luminosity

\implies clear DVCS signal observed at $Q^2 > 1 \text{ GeV}^2$, $x > 0.03$
Projected results

- **Transverse imaging:**
 \[B(x) \sim 1/2 \langle r^2_\perp(x) \rangle \]
 no model dependence

- **Azimuthal dependence:**
 comparison to different models
 \[\Rightarrow c^I_1 \propto \text{Re}(F_1 \mathcal{H}) \]

Projections with 2 years of data
\[\varepsilon_{\text{global}} = 10\% \]
\[L = 1222 \ \text{pb}^{-1} \]
Transverse Momentum Dependent Distributions

- dynamic picture of the nucleon using intrinsic transverse momentum k_T of partons
- sensitivity to quark orbital angular momentum
- at leading twist: full description with 8 TMDs
- 3 survive integration over k_T: f_1, g_1 and h_1

- TMDs are accessed by azimuthal asymmetries
- studied in SIDIS using unpolarised and transversely polarised target
- in SIDIS convolution with fragmentation function
Boer-Mulders and Sivers DF in SIDIS

BM function $h_{1}^{⊥}$: correlation of quark k_{T} and transverse spin in unpol. nucleons

- 2004 data on deuteron target: non-zero Boer-Mulders asymmetry ($A_{LU}^{\cos 2\phi}$)
- Boer-Mulders on proton will be measured in parallel with DVCS

Sivers function $f_{1T}^{⊥}$: correlation of quark k_{T} and nucleon transverse spin

- Sivers asymmetry ($A_{LT}^{\sin \phi S}$) measured at COMPASS with pol. deuteron and proton target
- positive asymmetry for h_{+} on proton, but smaller than seen by HERMES

Boer-Mulders and Sivers function are T-odd \rightarrow process dependent

\[h_{1}^{⊥}(\text{SIDIS}) = -h_{1}^{⊥}(\text{DY}) \]
\[f_{1T}^{⊥}(\text{SIDIS}) = -f_{1T}^{⊥}(\text{DY}) \]

\rightarrow Crucial test of non-perturbative QCD and of TMD approach
Drell-Yan at COMPASS

\[\pi^- p^\uparrow \rightarrow \mu^+ \mu^- X \]

- **DY**: convolution of two TMDs measured
- Access to 4 azimuthal modulations: Boer-Mulders, Sivers, pretzelosity and transversity PDFs
- Ideal DY measurement: \(\bar{p}p \)
- Good compromise \(\pi^- p \)
- Dominated by annihilation of valence anti-quark from \(\pi^- \) and valence quark from polarised proton
- Large acceptance of COMPASS in the valence region of \(p \) and \(\pi \) where large SSA are expected
Experimental requirements

- high intensity 190 GeV/c pion beam (up to 10^9/spill)
- transversely polarised NH$_3$ target
- hadron absorber downstream of target
- dimuon trigger system

Results from 2009 beam test

COMPASS DY test run 2009

- J/ψ events: 3170 ± 70
- $M = 3.092 \pm 0.005$ GeV
- $\sigma_M = 0.227 \pm 0.004$ GeV

Preliminary
Projections for azimuthal asymmetries

\[4 \text{ GeV}/c^2 < M_{\mu^+\mu^-} < 9 \text{ GeV}/c^2 \]

- Sivers
- Boer-Mulders
- BM \otimes \text{pretzelosity}
- BM \otimes \text{transversity}

projections with 2 years of data
6 \cdot 10^8 \pi \text{ spill (9.6 s)}
1.1 \text{ m pol. NH}_3

- **key measurements**: TMD universality, change of sign from SIDIS to DY, study of \(J/\psi \) production mechanism
Conclusions and Outlook

New proposal (**COMPASS II**) with

- DVCS and DVMP for the study of GPDs in a kinematic region not yet covered by experiments
- in parallel with GPD measurement rich programme in unpolarised DIS and SIDIS
- first polarised Drell-Yan experiment to study TMDs
- measurement of pion (kaon) polarsabilities

⇒ at least 5 years of data taking, can start from 2012

Program accepted in December 2010 for a first period of 3 years

COMPASS has a great potential in new fields and work is started to get the spectrometer upgraded for the new programmes