Spin structure functions of deuteron from COMPASS

A.Korzeneva, Mainz University
On behalf of the COMPASS collaboration

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z \rangle \]

\[\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \]

\textit{The Workshop ”Hadron Structure and Hadron Spectroscopy”, Prague}
August 1-3, 2005

aon leave from JINR, Dubna

Prague, August 1-3, 2005
Overview

• Inclusive asymmetry A_1^d and structure function g_1^d
• COMPASS experiment
• Asymmetry extraction procedure & results
• QCD analysis to world data
• Semi-inclusive asymmetries
• Summary and outlook
Spin structure functions of deuteron from COMPASS

Virtual photon-deuteron asymmetry

\[A_{\gamma d} \equiv A_1 = \frac{1}{2} (\sigma_0 - \sigma_2) \]
\[\frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_0) \approx \frac{\sum_q e_q^2 (q^+ - q^-)}{\sum_q e_q^2 (q^+ + q^- + q^0)} \]

- Structure functions in QPM
 \[F_1(x) = \frac{1}{3} \sum_q e_q^2 (q^+ + q^- + q^0) \]
 \[g_1(x) = \frac{1}{2} \sum_q e_q^2 (q^+ - q^-) \]

- Measurement of \(A_1 \) gives access to structure functions
 \[A_1 \approx \frac{g_1}{F_1} \]

- \(\mu \)-deuteron asymmetry is measured in experiment
 \[A_{\mu d} = \frac{\sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}}{\sigma_{\uparrow \downarrow} + \sigma_{\uparrow \uparrow}} \]

- Relation to \(A_1 \)
 \[A_{\mu d} = D (A_1 + \eta A_2) \]

- \(|\eta A_2| \ll |A_1| \)

- \[A_1 \approx \frac{A_{\mu d}}{D} \]
Spin structure functions of deuteron from COMPASS

- Beam: µ−beam
 - Energy: 160 GeV
 - Intensity: $2 \times 10^8 \mu$/spill
 - Polarization: −76%

- Target: Two 60 cm long target cells with opposite polarization
 - Target material 6LiD
 - Polarization: ~50%
 - Dilution factor: ~50%

- Spectrometer with 2 stages (SM1: 1Tm, SM2: 4.4 Tm)
- Electromagnetic & hadron calorimeters
- Particle identification: RICH & µF

Spectrometer

Prague, August 1-3, 2005
Triggers

- Inclusive triggers (μ')
- Hadronic triggers
 - Semi-Inclusive triggers ($\mu'+2\text{MIP}$)
 - Calorimetric trigger (9MIP)

- Parallel analysis for inclusive and hadronic events
- Hadronic triggers are check with MC study for possible bias
Kinematic region

\[Q^2 > 1 \text{GeV}^2 \]
\[0.004 < x < 0.03 \]
\[0.1 < y < 0.9 \]

- Data of 2002 + 2003
- \(34 \cdot 10^6\) events
- 71\% – data collected in 2003
Combining of data

- To cancel acceptance effects two sets of data with opposite target spin orientations are combined together
 - spin reversal every 8 h
 - polarization reversal few times per year

- To minimize influence of spectrometer instability data sets are split into pairs consecutively
2-nd order method for asymmetry extraction

\[N_u = a_u \Phi n_u \bar{\sigma} (1 + f P_b P_u D A_1) \]
\[N_d = a_d \Phi n_d \bar{\sigma} (1 - f P_b P_d D A_1) \]
\[N'_u = a'_u \Phi' n_u \bar{\sigma} (1 - f P_b P'_u D A_1) \]
\[N'_d = a'_d \Phi' n_d \bar{\sigma} (1 + f P_b P'_d D A_1) \]

\[
\frac{N_u N'_d}{N_d N'_u} = \frac{a_u a'_d}{a_d a'_u} \frac{1 + \langle \beta_u \rangle A_1}{1 - \langle \beta_d \rangle A_1} \frac{1 + \langle \beta'_d \rangle A_1}{1 - \langle \beta'_u \rangle A_1}
\]

, where \(\langle \beta_u \rangle = \frac{\sum_u f P_b P_u D}{N_u} \)

\[\delta = \frac{N_u N'_d}{N_d N'_u} \]
\[a = \frac{\delta}{\kappa} \langle \beta'_u \rangle \langle \beta_d \rangle - \langle \beta_u \rangle \langle \beta'_d \rangle \]
\[b = -\frac{\delta}{\kappa} (\langle \beta'_u \rangle + \langle \beta_d \rangle) - (\langle \beta_u \rangle + \langle \beta'_d \rangle) \]
\[c = \frac{\delta}{\kappa} - 1 \]

- 2-nd order equation:
 \[a A_1^2 + b A_1 + c = 0 \]
 \[A_1 = \frac{\pm \sqrt{b^2 - 4ac - b}}{2a} \]
- Stability in time: \(\kappa = \frac{a_u a'_d}{a_d a'_u} \approx 1 \)
Spin structure functions of deuteron from COMPASS

Target polarization

- After 5 days of build-up time: +0.53 and −0.50
- Average polarization over 2 years is 0.5
- Measurement by NMR coils with relative precision of 5%

Beam polarization

- MC simulation of the beam line
- Energy range: [140, 180] GeV
- Systematic uncertainty is 0.04
- Average polarization is 0.76

Prague, August 1-3, 2005

A. Korzenev
Dilution Factor:

\[
f = \frac{\bar{\sigma}^{1\gamma}}{\bar{\sigma}} n_D \bar{\sigma}_D + \sum_A (n_A \bar{\sigma}_A)
\]

- Naive expectation \((f = 0.5)\)

\(^6\text{LiD} = (^4\text{He} + \text{D}) + \text{D}\)

- Packing factor \(= 0.55 \Rightarrow\) Fraction of polarized material. Nuclear effects. \((f \approx 0.42)\)

- Radiative corrections \((f \approx 0.36)\)
 - small \(x\): elastic scattering
 - high \(x\): different kinematic region
Spin structure functions of deuteron from COMPASS

Dilution Factor:

\[
f = \frac{\bar{\sigma}^1 \gamma}{\bar{\sigma}} \frac{n_D \bar{\sigma}_D}{n_D \bar{\sigma}_D + \sum_A (n_A \bar{\sigma}_A)}
\]

- Naive expectation \((f = 0.5)\)

 \(^6\)LiD = \(^4\)He + D + D

- Packing factor = 0.55 \(\Rightarrow\)

 Fraction of polarized material.

 Nuclear effects. \((f \approx 0.42)\)

- Radiative corrections \((f \approx 0.36)\)

 - small \(x\): elastic scattering

 - high \(x\): different kinematic region

Prague, August 1-3, 2005

A. Korzenev
Dilution Factor:

\[
f = \frac{\tilde{\sigma}^{1\gamma}}{\tilde{\sigma}} \frac{n_D \tilde{\sigma}_D}{n_D \tilde{\sigma}_D + \sum_A (n_A \tilde{\sigma}_A)}
\]

- Naive expectation \((f = 0.5)\)

\(^6\text{LiD} = (^4\text{He} + \text{D}) + \text{D}\\

- Packing factor = 0.55 \Rightarrow Fraction of polarized material. Nuclear effects. \((f \approx 0.42)\)

- Radiative corrections \((f \approx 0.36)\)
 - small \(x\): elastic scattering
 - high \(x\): different kinematic region
Depolarization Factor

- it accounts for polarization transfer from μ to virtual photon

$$D \simeq \frac{y(2 - y)}{y^2 + 2(1 + R)(1 - y)}$$

$$R = \frac{\sigma_L}{\sigma_T}$$

- $x < 0.12$ – NMC parametrization
- $x > 0.12$ – SLAC parametrization

Prague, August 1-3, 2005

A. Korzenev
Main sources of systematic error

<table>
<thead>
<tr>
<th>Multiplicative error for A_1</th>
<th>Beam polariz.</th>
<th>4 – 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target polariz.</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Depolariz. fact.</td>
<td>4 – 5 %</td>
<td></td>
</tr>
<tr>
<td>Dilution. fact.</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>$\delta A_1 \simeq 0.1 A_1$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additive error for A_1</th>
<th>$A_2 \cdot \eta$</th>
<th>< 0.005 \cdot \eta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad. correct.</td>
<td>0.1 \cdot A^{RC}$, (A^{RC} < 0.01)</td>
<td></td>
</tr>
<tr>
<td>A_{false}</td>
<td>$< 0.5 \cdot \sigma_{stat}$</td>
<td></td>
</tr>
</tbody>
</table>
Results on Inclusive Asymmetry A_1^d

- Good agreement over the full range of x
- For $x < 0.03$ statistical error is reduced by factor of 2.5
- Results show no tendency toward negative values
Good agreement over the full range of x

For $x < 0.03$ statistical error is reduced by factor of 2.5

Results show no tendency toward negative values
Spin structure functions of deuteron from COMPASS

Results on Inclusive Asymmetry A_1^d

- Good agreement over the full range of x
- For $x < 0.03$ statistical error is reduced by factor of 2.5
- Results show no tendency toward negative values
Results on Inclusive Asymmetry A_1^d

- Good agreement over the full range of x
- For $x < 0.03$ statistical error is reduced by factor of 2.5
- Results show no tendency toward negative values
Results on Structure Function g_1^d

$$g_1^d = \frac{F_2^d}{2x(1 + R)} A_1^d$$

- Good agreement over the full range of x
- For $x < 0.03$ statistical error is reduced by factor of 2.5
- Results show no tendency toward negative values
Results on Structure Function g_1^d

\[g_1^d = \frac{F_2^d}{2x(1 + R)} A_1^d \]

- Good agreement over the full range of x
- For $x < 0.03$ statistical error is reduced by factor of 2.5
- Results show no tendency toward negative values

- Integral over the range $0.004 < x < 0.03$
 - SMC: $(-5.3 \pm 2.3) \cdot 10^{-3}$
 - COMPASS: $(-0.3 \pm 1.0) \cdot 10^{-3}$
- Improved extrapolation of g_1^d toward $x = 0$
- If compared to SMC no improvement in Γ_1^d
QCD analysis

- Measured structure functions $g_1^{p,d,n}$ (different x, Q^2)

$$g_1(x, Q^2) = \frac{1}{2} \langle e^2 \rangle \left[C_q^S \otimes \Delta \Sigma + C_q^{NS} \otimes \Delta q^{NS} + 2n_f C G \otimes \Delta G \right]$$

- DGLAP equations (Q^2-dependence)

$$\frac{d}{dt} \Delta q^{NS} = \frac{\alpha_s(t)}{2\pi} P_{qq}^{NS} \otimes \Delta q^{NS}$$

$$\frac{d}{dt} \begin{pmatrix} \Delta \Sigma \\ \Delta G \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \begin{pmatrix} P_{qq}^{S} & 2n_f P_{qG}^{S} \\ P_{Gq}^{S} & P_{GG}^{S} \end{pmatrix} \otimes \begin{pmatrix} \Delta \Sigma \\ \Delta G \end{pmatrix}, \quad t = \log \left(\frac{Q^2}{\Lambda^2} \right)$$

- Initial parametrization (x-dependence at fixed Q^2)

$$(\Delta \Sigma, \Delta q^{NS}, \Delta G) = \eta \frac{x^\alpha (1-x)^\beta (1+\gamma x)}{\int_0^1 x^\alpha (1-x)^\beta (1+\gamma x)dx}$$

- Minimization routine

$$\chi^2 = \sum_{i=1}^N \left[\frac{g_1^{\text{calc}}(x, Q^2) - g_1^{\text{exp}}(x, Q^2)}{\sigma_{\text{stat}}(x, Q^2)} \right]^2$$
Spin structure functions of deuteron from COMPASS

Results QCD fit

- Program “2” in SMC notation (D.Fasching, hep-ph/9610261)
- Numerical calculation in NLO (\overline{MS} scheme)
- World data fit
Quark spin content (\(\Delta \Sigma\) in \(\overline{MS}\))
Quark spin content \((\Delta \Sigma\text{ in } \overline{\text{MS}})\)

<table>
<thead>
<tr>
<th></th>
<th>with COMPASS data</th>
<th>without COMPASS data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC"2" (Q^2=4\text{ GeV}^2)</td>
<td>0.237 (+0.024\text{ }-0.029)</td>
<td>0.202 (+0.042\text{ }-0.077)</td>
</tr>
</tbody>
</table>
Quark spin content (ΔΣ in $\overline{\text{MS}}$)

<table>
<thead>
<tr>
<th>with COMPASS data</th>
<th>without COMPASS data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC"2" $Q^2=4$ GeV2</td>
<td></td>
</tr>
<tr>
<td>0.237 $^{+0.024}_{-0.029}$</td>
<td>0.202 $^{+0.042}_{-0.077}$</td>
</tr>
</tbody>
</table>
Quark spin content (\(\Delta \Sigma\) in \(\overline{\text{MS}}\))

<table>
<thead>
<tr>
<th>with COMPASS data</th>
<th>without COMPASS data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC"2" (Q^2=4\ \text{GeV}^2)</td>
<td>AAC03 (Q^2=1\ \text{GeV}^2)</td>
</tr>
<tr>
<td>0.237 +0.024 −0.029</td>
<td>0.202 +0.042 −0.077</td>
</tr>
<tr>
<td>0.189 ±0.054</td>
<td>0.213 ±0.039</td>
</tr>
</tbody>
</table>

Quark spin content (ΔΣ in \(\overline{\text{MS}} \))

<table>
<thead>
<tr>
<th></th>
<th>with COMPASS data</th>
<th>without COMPASS data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMC"2" (Q^2=4 \text{ GeV}^2)</td>
<td>LSS05 (Q^2=1 \text{ GeV}^2)</td>
</tr>
<tr>
<td></td>
<td>0.237 (\pm 0.024) (\pm 0.029)</td>
<td>0.189 (\pm 0.054)</td>
</tr>
<tr>
<td></td>
<td>0.202 (\pm 0.042) (\pm 0.077)</td>
<td>AAC03 (Q^2=1 \text{ GeV}^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.213 (\pm 0.039)</td>
</tr>
</tbody>
</table>

What is detected in final state?

Inclusive DIS

- Detected particle: μ, μ'
- $A_1 = \frac{\sum_q e_q^2 [\Delta q(x) + \Delta \bar{q}(x)]}{\sum_q e_q^2 [q(x) + \bar{q}(x)]}$
- only $\Delta q + \Delta \bar{q}$ can be measured

Semi-Inclusive DIS

- Detected particle: $\mu, \mu', h, ...$
- $A_1^h = \frac{\sum_q e_q^2 [\Delta q(x) \int D_q^h dz + \Delta \bar{q}(x) \int D_{\bar{q}}^h dz]}{\sum_q e_q^2 [q(x) \int D_q^h dz + \bar{q}(x) \int D_{\bar{q}}^h dz]}$
- $D_q^h \neq D_{\bar{q}}^h \Rightarrow$ quarks and anti-quarks separation
Asymmetries which we measure

\[\vec{A}_1 = \{ A_1, A_1^{h+}, A_1^{h-}, A_1^{K+}, A_1^{K-}, A_1^{K_0} \} \]

Inclusive Asymmetry

\approx 90\% \text{ of hadrons are pions}

Secondary vertices produced by track coming from interaction point

90\% of hadrons are pions

Inclusive Threshold: \(p_K > 9 \text{ GeV} \)

RICH PID

Mass Spectrum

Zoom

Prague, August 1-3, 2005

A. Korzenev
Spin structure functions of deuteron from COMPASS

Agreement with previous experiments

Significant statistical improvement at low x
Spin structure functions of deuteron from COMPASS

- Agreement with previous experiments

- Significant statistical improvement at low x

Prague, August 1-3, 2005

A.Korzeniev
Summary

- Analysis of data of 2002 and 2003
- New measurement of A_1^d and g_1^d in DIS region ($Q^2 > 1 \text{ GeV}^2$, $0.004 < x < 0.7$)
 - Good agreement with results of previous experiments
 - Improvement in statistical precision factor 2.5 in region $x < 0.03$
 - Extrapolation improvement of g_1^d toward $x = 0$
 - With QCD fit (\overline{MS}) decrease of error ≈ 2 for $\Delta \Sigma$
- Hadron asymmetries A_1^{h+} & A_1^{h-} have been shown

Outlook

- Sizable improvement with 2004 data is expected (Calo trigger)
- Kaon asymmetries A_1^{K+}, A_1^{K-}, $A_1^{K_S}$ are coming
- Analysis of A_1^d at low x and low Q^2 is going