First results on the longitudinal double spin asymmetry A_1^p and g_1^p from the 2011 COMPASS data

Malte Wilfert

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

March 4th 2013
M2 beamline

Polarized μ beam ($\sim 80\%$)
160 GeV/c, 200 GeV/c

Solid polarized target (1.2m)

Spectrometer

- Two magnets
- Tracking ($p > 0.5$ GeV/c)
 SciFi, Silicon MicroMega, Gem
 MWPC, Drift, Straws, Driftubes
- PID: RICH(π, K, p)
 ECAL, HCAL, muon filters
Polarized target

- Upgrade of the target system in 2005
- Three target cells, oppositely polarized
- 180 mrad geometrical acceptance
- Regular polarization reversals by field rotation
- \(\text{NH}_3 \) (Longitudinal proton polarization: \(\sim 90\% \))
Deep Inelastic Scattering

- 4-momentum of the virtual photon: $q = k - k'$
- Energy of the virtual photon:
 $$\nu = \frac{Pq_{\text{lab}}}{M} = E - E'$$
- $Q^2 = -q^2_{\text{lab}} \approx 4EE' \sin^2 \frac{\theta}{2}$
- Bjorken scaling variable:
 $$x_{\text{lab}} = \frac{Q^2}{2M\nu}$$
 $$y_{\text{lab}} = \frac{\nu}{E}$$

Inclusive cross section:

$$\frac{d^2\sigma}{d\Omega dE'} \sim c_1 F_1(x, Q^2) + c_2 F_2(x, Q^2) + c_3 g_1(x, Q^2) + c_4 g_2(x, Q^2)$$

- spin independent
- spin dependent
Polarized Deep Inelastic Scattering

Absorption of polarized photons

\[\sigma_{1/2} \sim q^+ \]
\[\sigma_{3/2} \sim q^- \]

\[q(x) = q(x)^+ + q(x)^- \]
\[\Delta q(x) = q(x)^+ - q(x)^- \]

Photon nucleon asymmetry

\[A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_q e_q^2 (q(x)^+ - q(x)^-)}{\sum_q e_q^2 (q(x)^+ + q(x)^-)} = \frac{g_1(x, Q^2)}{F_1(x, Q^2)} \]

Spin structure function

\[g_1(x, Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = A_1(x, Q^2) \cdot \frac{F_2(x, Q^2)}{2x(1 + R(x, Q^2))} \]
Method

Aim:
\[A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \]

Measured:
\[A_{\text{exp}} = \frac{N_u - N_d}{N_u + N_d} \]

Needed:
- Flux cancellation
- Acceptance cancellation
 → Polarization rotation
 → 3 target cells

Averaging:
\[A_{\text{exp}} = A \cdot P_B \cdot P_T \cdot f \]

\[A_{\text{exp}} = \frac{A + A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N'_u - N'_d}{N'_u + N'_d} \right) \]
2011 Data

2007 and 2011 data taking
- Target: NH$_3$
- Increased beam energy 160 GeV → 200 GeV
- Higher Q^2
- Smaller x_{Bj}

Improve results on
- Bjorken sum rule (systematic error)
- QCD fit
- Flavor asymmetry

Event selection
- Kinematic cuts:
 - $Q^2 > 1$ (GeV/c)2
 - $0.1 < y < 0.9$ remove radiative events
 - $0.0025(0.0040) < x < 0.7$
- Extrapolated beam track crosses all target cells
 \rightarrow Flux cancellation
Systematic studies

- Determination of the exact target position
- Checking the data quality
 → e.g. Influence of small detector movements, detector problems,...
- Most important contribution to the systematic error
 → False asymmetries
 - Microwave reversal
 - Fake configuration (same spin orientation)

![Graph showing systematic studies results]

COMPASS 2011 Preliminary
2011 results

- **78 \cdot 10^6** Events
- Dilution factor includes radiative corrections
- Higher Q^2 in 2011
- Field reversals
2011 results

- Good agreement between COMPASS 2011/07 and SMC
- 2011: Small 14N corrections missing
- $g_1^p(x, Q^2) = \frac{F_2^p(x, Q^2)}{2x(1+R(x, Q^2))} A_1^p$
- F_2^p parameterization from SMC
- Same parameterization for R as in depolarization factor
Summary and Outlook

- New measurement at 200 GeV/c
- Measurement of A_1^p and g_1^p
 - New value at small x
 - 2011 data improve the precision of the COMPASS results

Outlook

- Identified hadron asymmetry
- Include our results in a NLO pQCD fit
- Improve the results on the test of the Bjorken sum rule