Longitudinale Spinphysik bei COMPASS

Malte Wilfert

1. February 2016

Institutsseminar Kernphysik
Outline

1. Introduction
2. Results on A_1^p and g_1^p
3. NLO QCD fit
4. Validation of the Bjorken sum rule
5. Identified hadron asymmetries
6. Summary and Outlook
Motivation

Longitudinal spin composition of the nucleon:

\[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]
\[\Delta \Sigma = \Delta U + \Delta D + \Delta S \]

- Quark spin \(\Delta \Sigma \) contributes only about 30% to the nucleon spin
- Gluon contribution \(\Delta G \) some experimental constrains available
- Hardly any experimental information on orbital angular momentum \(L \)
Deep Inelastic lepton nucleon Scattering

$\ell N \rightarrow \ell' X$

- Measurement of the nucleon structure
- Scattering of leptons on nucleons
- Kinematic domain with no individual resonances
- Measurement of the spin structure
 - Polarised nucleon
 - Polarised leptons
 - \rightarrow Polarised γ
 - High energetic beam
SPS proton beam

secondary hadron beam (ρ, π, K) 150 – 270 GeV/c

tertiary muon beam

400 GeV/c

100 – 200 GeV/c
The COMPASS experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

- M2 beamline
- Solid state polarised target (1.2 m)
- Polarised μ beam ($P_b \sim 80\%$)
 - Energy: 160 GeV, 200 GeV
 - Flux: $10^8 \mu/s$

Spectrometer

- Two magnets
- Tracking ($p > 0.5 \text{ GeV}/c$)
 - SciFi, Silicon MicroMega, Gem, MWPC, Straws, Drift tubes
- PID: RICH(π, K, p)
 - ECAL, HCAL, muon filters

Malte Wilfert (KPH Mainz)
Polarised target

- Needed: polarised p, d
 → Solid state target
- Polarised via DNP
- High magnetic field: 2.5 T solenoid field
- Low temperature 50 mK
- 6LiD (Longitudinal deuteron polarisation: $\sim 50\%$)
- NH$_3$ (Longitudinal proton polarisation: $\sim 90\%$)
- Large geometrical acceptance (180 mrad)
Deep Inelastic lepton nucleon Scattering

- **DIS:** $\ell + N \rightarrow \ell' + X$
- **SIDIS:** $\ell + N \rightarrow \ell' + h + X$

DIS variables

- **Photon virtuality:** $Q^2 = -q^2$
- **Bjorken scaling variable:** $x = \frac{Q^2}{2 \cdot P \cdot q}$
- **Relative photon energy:** $y = \frac{E - E'}{E}$

Hadron variables

- **Hadron energy fraction:** $z = \frac{E_h}{E - E'}$
- **Transverse momentum:** p_T
- **Longitudinal momentum:** p_L
Polarised Deep Inelastic Scattering

- Absorption of polarised photons
 \[
 \sigma_{1/2} \sim q^+ \\
 \sigma_{3/2} \sim q^-
 \]
- Photon nucleon asymmetry
 \[
 A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_q e_q^2(q(x)^+ - q(x)^-)}{\sum_q e_q^2(q(x)^+ + q(x)^-)}
 \]
- Spin structure function
 \[
 g_1(x, Q^2) = A_1(x, Q^2) \cdot F_1(x, Q^2) \approx \frac{1}{2} \sum_q e_q^2 \Delta q(x)
 \]
Method (idea)

- **Aim:**
 \[A = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \]

- **Measured:**
 \[A_{\text{exp}} = \frac{N_u - N_d}{N_u + N_d} \]

- **Needed:**
 - Flux cancellation
 - Acceptance cancellation
 - \(\rightarrow \) polarisation rotation
 - \(\rightarrow \) 3 target cells

\[N_i = a_i \phi_i n_i \sigma (1 + P_B P_T fDA_1) \]
Acceptance cancellation

- Acceptance changes with Z
- Two/Three target cells, oppositely polarised
- Measuring simultaneously both polarisations
- Flux cancels
- Regular polarisation reversals by field rotation
- Once by repolarisation
Data selection

2007 and 2011 data taking

- Target material: NH$_3$
- Increased beam energy: 160 GeV → 200 GeV
 - Higher Q^2
 - Smaller x

Event selection

- Kinematic cuts:
 - $Q^2 > 1$ (GeV/c2)
 - $0.1 < y < 0.9$ remove hard to reconstruct/radiative events
 - $0.0025(0.004) < x < 0.7$
 - $W^2 > 10$ (GeV/c2)2
 - Extrapolated beam track crosses all target cells
Data quality studies

- Influence of small detector movements, detector problems ...
- Check mean values of different quantities (e.g. Number of tracks)
- Check stability of K^0 mass for all runs
Data quality studies

- Influence of small detector movements, detector problems ...
- Check mean values of different quantities (e.g. Number of tracks)
- Check stability of K^0 mass for all runs
Inputs to for asymmetry calculation

\[A_{\text{exp}} = A_1 \cdot P_B \cdot P_T \cdot f \cdot D \]

- **D**: Depolarisation factor
- **f**: Dilution factor
- **P_T**: Target polarisation
- **P_B**: Beam polarisation
- **Calculate average**
Systematic studies

- Most important contribution to the systematic uncertainty:
 - False asymmetries
 - Microwave reversal
 - Fake configuration (same spin orientation)
- Several other tests
Systematic studies

- Most important contribution to the systematic uncertainty:
 - False asymmetries
 - Microwave reversal
 - Fake configuration (same spin orientation)
 - Several other test

![Graph showing A_{fake} vs. x_{Bj}](image-url)
Results on A_1^p

- x dependence of the asymmetry
- Rise towards valence region

$g_1^p(x, Q^2) = F_1(x, Q^2)A_1^p(x, Q^2)$
A_1^D in bins of x and Q^2

- ^{14}N correction and pol. rad. corrections included
- New data points at very small x
- Good agreement between COMPASS results at 160/200 GeV
Result compared to the world data

- World data
- COMPASS 2011 (200 GeV)
- COMPASS 2007 (160 GeV)
- COMPASS fit at NLO
- New data point at very low x
- Interpretation in QPM using pQCD
- Input for global QCD fit
- Indirect ΔG extraction
NLO QCD analyses I

- DGLAP equations

\[\frac{d}{d \ln Q^2} \Delta q_{\text{NS}} = \frac{\alpha_s(Q^2)}{2\pi} \Delta P_{\text{NS}}^{qq} \otimes \Delta q_{\text{NS}} \]

\[\frac{d}{d \ln Q^2} \left(\begin{array}{c} \Delta q_{\text{Si}} \\ \Delta g \end{array} \right) = \frac{\alpha_s(Q^2)}{2\pi} \left(\begin{array}{cc} \Delta P_{qq}^{\text{Si}} & 2n_f \Delta P_{qg} \\ \Delta P_{gq} & \Delta P_{gg} \end{array} \right) \otimes \left(\begin{array}{c} \Delta q_{\text{Si}} \\ \Delta g \end{array} \right) \]

- Structure function:

\[g_1 = \frac{1}{2} \langle e^2 \rangle \left(C_{\text{Si}}(\alpha_s) \otimes \Delta q_{\text{Si}} + C_{\text{NS}}^{\text{NS}}(\alpha_s) \otimes \Delta q_{\text{NS}} + C_{\text{g}}(\alpha_s) \otimes \Delta g \right) \]

- \(\Delta q_{\text{Si}} = \Delta U + \Delta D + \Delta S, \Delta q_3 = \Delta U - \Delta D, \Delta q_8 = \Delta U + 2\Delta D - \Delta S \)

- Using only inclusive asymmetries quarks and anti-quarks cannot be disentangled e.g. determination of \(\Delta(u + \bar{u}), \Delta(d + \bar{d}), \Delta(s + \bar{s}) \) and \(\Delta g \)
No x dependence given

Input parametrisation at $Q_0^2 = 1 \text{(GeV/c)^2}$ needed

Guess parametrisation

- Low x: x^α
- High x: $(1 - x)^\beta$
- Allow for a node: $1 + \gamma x$

$$f = \eta \frac{x^\alpha (1 - x)^\beta (1 + \gamma x)}{\int_0^1 x^\alpha (1 - x)^\beta (1 + \gamma x) dx}$$
\[\chi^2 = \sum_{n=1}^{N_{\text{exp}}} \left[\sum_{i=1}^{N_n^{\text{data}}} \left(\frac{g^\text{fit}_{n,i} - N_n g^\text{data}_{n,i}}{N_n \sigma_i} \right)^2 + \left(\frac{1 - N_n}{\delta N_n} \right)^2 \right] + \chi^2_{\text{positivity}} \]

- Positivity: \(|\Delta g(x)| < g(x) \) and \(|\Delta (q(x) + \bar{q}(x))| < q(x) + \bar{q}(x) \)
- Overall: 11 free parameters and 495 data points (\(W^2 > 10 \text{ GeV}^2 \))
- Unpolarised parton distributions from MSTW2008
Solutions for parton distributions

- Several equally good solutions
- Two extremes selected
- Systematic studies:
 - Different parametrisations
 - Reference scale Q_0^2
 - χ^2 very stable

→ Systematic uncertainty larger than statistical
Statistical uncertainty

- Generation of 1000 sets of pseudo data:
 - Randomise data points according to a normal law
- Fit each data set
- Calculate mean and spread $\rightarrow 1\sigma$ interval

Confidence level 68%

$Q^2 = 3 \text{ (GeV/c)}^2$
Polarised parton distributions

- Quark polarisation \(0.26 < \Delta \Sigma < 0.36\)
- Gluon polarisation \(\Delta G = \int \Delta g(x)dx\) Not well constrained

\("\rightarrow\) Direct measurement
First moments from COMPASS data

\[\Gamma_{p,n}^{p,n}(Q^2) = \frac{1}{36} \int_0^{x_{min}} g_{1}^{p,n}(x, Q^2) dx = \frac{1}{36} \left[(a_8 \pm 3a_3) C^{NS}(Q^2) + 3a_0 C^{S}(Q^2) \right] \]

- Evolve \(g_1 \) to \(Q^2 = 3 \text{ (GeV/} c)^2 \)
- Use results from QCD fit
- Calculate contributions from unmeasured region \((x \to 0, 1) \)

\[\Gamma_{1}^{P} = 0.139 \pm 0.003_{\text{stat}} \pm 0.009_{\text{syst}} \pm 0.005_{\text{evol}} \]
\[\Gamma_{1}^{N} = 0.049 \pm 0.003_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.004_{\text{evol}} \]
Bjorken sum rule from COMPASS measurement

\[
\int_0^1 g_{1NS}(x, Q^2) dx = \frac{1}{6} \left| \frac{g_A}{g_V} \right| C_{1NS}(Q^2)
\]

- Non-singlet spin structure function
 \[g_{1NS} = g_{1P} - g_{1D} = 2 \left[g_{1P} - \frac{g_{1D}}{1-3/2\omega_D} \right], \omega_D = 0.05 \]

- \(g_{1NS} \) determined from COMPASS data only
 - 2007 & 2011 proton data
 - 2002 - 2004 deuteron data

- \(\left| \frac{g_A}{g_V} \right| = 1.2701 \pm 0.0020 \) obtained from neutron \(\beta \)-decay.

- Aim: Verification of the Bjorken sum rule
Non-singlet structure function

- Calculate g_{1}^{NS}
- Perform NLO QCD fit
 - Fit only Δq_3
 - 3 parameters needed
- Evolve g_{1}^{NS} to $Q^2 = 3 \text{(GeV/c)}^2$
- Extrapolation used for unmeasured region ($x \to 0, 1$)
- 94% in measured range
- Verification of the Bjorken sum rule:
$$\left| \frac{g_A}{g_V} \right|_{\text{NLO}} = 1.22 \pm 0.05\text{(stat.)} \pm 0.10\text{(syst.)}$$
Hadron Asymmetries

\[A_1^h(x, z) = \frac{\sum_q e_q^2 (\Delta q(x) D_q^h(z) + \Delta \bar{q}(x) D_{\bar{q}}^h(z))}{\sum_q e_q^2 (q(x) D_q^h(z) + \bar{q}(x) D_{\bar{q}}^h(z))} \]

- Calculate asymmetry for hadrons (π^\pm, K^\pm)
- Particle identification needed
- Use the RICH detector
- Determine identification efficiencies
- Access to all helicity distributions $\Delta q(x), \Delta \bar{q}(x)$
- Dependence on fragmentation functions $D_q^h(z)$
The RICH detector

- Using the Cherenkov effect
- Ring projected on photo detectors
- Likelihood method for identification
Momentum dependence of the Cherenkov angle
Efficiency determination - method I

- Needed: Known particle ID without RICH information
- Use:
 - $K^0 \rightarrow \pi^+\pi^-$
 - $\phi \rightarrow K^+K^-$
 - $\Lambda \rightarrow \pi^-p$
- Weak decays of K^0/Λ: secondary vertex seen
 \rightarrow Cleaner sample
- Strong decays of ϕ: secondary vertex not seen
 \rightarrow Larger background
Assumption: Efficiency depends mainly on particle momentum and entry angle.

- Strong momentum dependence: 13 bins ($10 - 50 \text{ GeV}/c$)
- Weak angular dependence: 4 bins ($0 - 0.3 \text{ rad}$)

Tag one of the decay particles using the RICH (e.g. π^- from K^0 decay)

ID of the second particle known (must be π^+)

Check the answer from the RICH (Identified as $\pi/K/p/no\text{ID}$)
Fit of the invariant mass spectra

Fit simultaneously all five histograms

Constrain on $N(\text{all}) = N(\pi) + N(K) + N(p) + N(\text{noID})$

\rightarrow Efficiency between 0% and 100%

Efficiency $\epsilon(\pi^+ \rightarrow K^+) = N(\pi \rightarrow K)/N(\text{all})$

- $N(\text{all})$ constrained by first histogram (all particles)
- $N(\pi \rightarrow K)$ from third histogram (π identified as K)
Purity determination

- Coverage in the angle θ and momentum p
- Only one x-bin shown
- So far: RICH efficiency \rightarrow detector property
- Needed: Purity/Contaminations \rightarrow physics quantity
- Determined by:
 - Number of true hadrons
 - Number of Identified hadrons
 - RICH efficiency
Purity results
First results

- First very preliminary results
- Unfolding: $A_{1,\text{true}} = \left(Q^T\right)^{-1} A_{1,\text{id}}$
- 2011: Take into account protons
- Small correction
- No correlations calculated so far
- Systematic studies ongoing
Summary and Outlook

- New measurement of A_1^p and g_1^p at 200 GeV
 - NLO QCD fit of world data
 - Update on the Bjorken sum rule from COMPASS data only
 - Verification of the Bjorken sum rule

- Identified hadron asymmetries
 - Method for extracting RICH efficiencies
 - Determination of the hadron purities
 - First results on the asymmetry

- Outlook
 - Further work on the identified hadron asymmetries
 - Extraction of polarised PDFs for each flavour