Results on longitudinal spin physics at COMPASS

Malte Wilfert
on behalf of the COMPASS collaboration

30th June 2015

QCD 15

- COMPASS
- Structure functions
- Quark & gluon polarisation
Spin contributions of the nucleon:

\[S = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]
\[\Delta \Sigma = \Delta u + \Delta d + \Delta s \]

- Measured in DIS
- Quark spin contributes only about 30% to the nucleon spin
- Gluon contribution constrained only for a limited x range
- Hardly any experimental information on orbital angular momentum
M2 beamline

Polarised μ beam ($P_b \sim 80\%$)
$160 \text{ GeV/c}, 200 \text{ GeV/c}$

Solid state polarised target (1.2 m)

Two magnets

Tracking ($p > 0.5 \text{ GeV/c}$)
SciFi, Silicon MicroMega, Gem, MWPC, Straws, Drift tubes

PID: RICH(π, K, p)
ECAL, HCAL, muon filters
Polarised target

- Two/Three target cells, oppositely polarised
- 180 mrad geometrical acceptance
- Regular polarisation reversals by field rotation
- LiD (Longitudinal deuteron polarisation: \(\sim 50\%\))
- \(\text{NH}_3\) (Longitudinal proton polarisation: \(\sim 90\%\))
- 2.5 T solenoid field
- Low temperature 50 mK
Deep Inelastic Scattering

- DIS: $\ell + N \rightarrow \ell' + X$
- SIDIS: $\ell + N \rightarrow \ell' + h + X$

DIS variables
- Photon virtuality: $Q^2 = -q^2$
- Bjorken scaling variable: $x = \frac{Q^2}{2 \cdot P \cdot q}$
- Relative photon energy: $y = \frac{E - E'}{E}$

Hadron variables
- Hadron energy fraction: $z = \frac{E_h}{E - E'}$
- Transverse momentum: p_T
- Longitudinal momentum: p_L
Absorption of polarised photons
\[\sigma_{1/2} \sim q^+ \]
\[\sigma_{3/2} \sim q^- \]
\[q(x) = q(x)^+ + q(x)^- \]
\[\Delta q(x) = q(x)^+ - q(x)^- \]

Photon nucleon asymmetry
\[
A_1(x, Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_q e_q^2(q(x)^+ - q(x)^-)}{\sum_q e_q^2(q(x)^+ + q(x)^-)} = \frac{g_1(x, Q^2)}{F_1(x, Q^2)}
\]

Spin structure function
\[
g_1(x, Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = A_1(x, Q^2) \cdot F_1(x, Q^2)
\]
Method (idea)

Aim:
\[A = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \]

Measured:
\[A_{\text{exp}} = \frac{N_u - N_d}{N_u + N_d} \]

Needed:
- Flux cancellation
- Acceptance cancellation
 \rightarrow polarisation rotation
 \rightarrow 3 target cells

\[A_{\text{exp}} = A \cdot P_B \cdot P_T \cdot f \]
\[A = A_1 \cdot D \]
\[f: \text{ Dilution factor} \]
\[D: \text{ Depolarisation factor} \]

Averaging:
\[A_{\text{exp}} = \frac{A + A'}{2} = \frac{1}{2} \left(\frac{N_u - N_d}{N_u + N_d} + \frac{N_d' - N_u'}{N_u' + N_d'} \right) \]
A_1^p in bins of x and Q^2

- 14N correction and pol. rad. corrections included
- New data point at very small x
- Good agreement between COMPASS 2007 and 2011 data
Result compared to the world data

- COMPASS 2011 (200 GeV)
- COMPASS 2007 (160 GeV)
- COMPASS fit at NLO
- New data point at very low x
- Input for global QCD fit
- Indirect ΔG extraction
NLO QCD analyses

- DGLAP equations

\[\frac{d}{d \ln Q^2} \Delta q_{NS} = \frac{\alpha_s(Q^2)}{2\pi} \Delta P^N_{qq} \otimes \Delta q_{NS} \]

\[\frac{d}{d \ln Q^2} \begin{pmatrix} \Delta q_{Si} \\ \Delta g \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{pmatrix} \Delta P^S_{qq} \\ \Delta P^g_{qg} \\ 2n_f \Delta P^g_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Delta q_{Si} \\ \Delta g \end{pmatrix} \]

- Structure function:

\[g_1 = \frac{1}{2} \langle e^2 \rangle \left(C^{Si}(\alpha_s) \otimes \Delta q_{Si} + C^{NS}(\alpha_s) \otimes \Delta q_{NS} + C^g(\alpha_s) \otimes \Delta g \right) \]

- Input parametrisation \(f \) of \(\Delta q_{Si}, \Delta q_3, \Delta q_8, \Delta g \) at \(Q^2_0 = 1 \text{ GeV}^2 \) needed

\[f = \eta \frac{x^\alpha(1-x)^\beta(1+\gamma x)}{\int_0^1 x^\alpha(1-x)^\beta(1+\gamma x)dx} \]

- Using only inclusive asymmetries quarks and anti-quarks cannot be disentangled e.g. determination of \(\Delta(u + \bar{u}), \Delta(d + \bar{d}), \Delta(s + \bar{s}) \) and \(\Delta g \)

\[\Delta q_{Si} = \Delta U + \Delta D + \Delta S, \quad \Delta q_3 = \Delta U - \Delta D, \quad \Delta q_8 = \Delta U + 2\Delta D - \Delta S \]
Input and constraints

\[\chi^2 = \sum_{n=1}^{N_{\text{exp}}} \left[\sum_{i=1}^{N_{\text{data}}} \left(\frac{g_{1,1}^{\text{fit}} - N_n g_{1,i}^{\text{data}}}{N_n \sigma_i} \right)^2 + \left(\frac{1 - N_n}{\delta N_n} \right)^2 \right] + \chi^2_{\text{positivity}} \]

- Positivity: \(|\Delta g(x)| < g(x)\) and \(|\Delta(q(x) + \bar{q}(x))| < q(x) + \bar{q}(x)\)
- Overall: 11 free parameters and 495 data points \((W^2 > 10 \text{ GeV}^2)\)
- MSTW2008
Systematic studies

- Remarks on the previously published fit:
 - No systematic uncertainties
- Study impact of:
 - Different parametrisations
 - Reference scale Q_0^2
- χ^2 very stable

→ Larger uncertainty compared to statistical one
Polarised parton distributions

- Quark polarisation $0.26 < \Delta \Sigma < 0.36$
- Gluon polarisation $\Delta G = \int \Delta g(x)dx$ Not well constrained → Direct measurement
Bjorken sum rule from COMPASS measurement

\[\frac{1}{2} \int_{0}^{1} g_{NS}^{1}(x, Q^2) \, dx = \frac{1}{2} \int_{0}^{1} (g_{1}^{p}(x, Q^2) - g_{1}^{n}(x, Q^2)) \, dx = \frac{1}{6} \left| \frac{g_{A}}{g_{V}} \right| C_{NS}^{1}(Q^2) \]

- Non-singlet spin structure function
 \[g_{NS}^{1} = g_{1}^{p} - g_{1}^{n} = 2 \left[g_{1}^{p} - \frac{g_{1}^{d}}{1 - 3/2 \omega_D} \right], \omega_D = 0.05 \]

- \(g_{NS}^{1} \) determined from COMPASS data only
 - 2007 & 2011 proton data
 - 2002 - 2004 deuteron data

- \(\left| \frac{g_{A}}{g_{V}} \right| = 1.2701 \pm 0.0020 \) obtained from neutron \(\beta \)-decay.

- Aim: Verification of the Bjorken sum rule
Non-singlet structure function

- Calculate \(g_1^{NS} \)
- Perform NLO QCD fit
 - Fit only \(\Delta q_3 \)
 - 3 parameters needed
- Evolve \(g_1^{NS} \) to \(Q^2 = 3 \text{ (GeV/c)}^2 \)
- Extrapolation used for unmeasured region \((x \rightarrow 0, 1)\)
- 94\% in measured range
- Verification of the Bjorken sum rule:

 \[
 g_A / g_V = 1.22 \pm 0.05_{\text{(stat.)}} \pm 0.10_{\text{(syst.)}}
 \]
Access to the gluon polarisation

- Contribution from three processes to the cross section

\[A_{LL}^h = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = \alpha \cdot A_{1}^{LO}(x_{Bj}) + \beta \cdot A_{1}^{LO}(x_{C}) + \gamma \cdot \Delta g/g(x_g) \]

\[A_{1}^{LO} = \frac{\sum_i e_i^2 \Delta q_i}{\sum_i e_i^2 q_i} \]

- From model
- Simultaneous extraction
Method

- Reanalysis with new method (PLB 718 (2013) 922)
- Treat all processes in the same footing
- Factors α, β, γ depend on: a_{LL}^i, R_i
- Use Neural Network to disentangle the processes
 \rightarrow Events are counted 3 times
- Compare expected and observed number of events
 \rightarrow Minimise the χ^2
- Expected Number of events depends on:
 $a_{LL}^i, R_i, A_1^{LO}, \Delta g/g$, acceptance, unpol. cross section, flux
Neural Network

- NN is trained on MC to parametrise R_i, a^i_{LL}, x_c, x_g
- Input parameters: x_{Bj}, Q^2, p_T, p_L
- High p_T: Clean source of PGF/QCDC
- Low p_T: Clean source of LP
Neural Network

- NN is trained on MC to parametrise R_i, a_{LL}^i, x_c, x_g
- Input parameters: x_{Bj}, Q^2, p_T, p_L

- High p_T: Clean source of PGF/QCDC
- Low p_T: Clean source of LP
Monte Carlo

- Important variables estimate by MC: R_i, a_{LL}^i, x_c, x_g
- Good MC description important
- Reasonable description of the data
- Some improvements possible
- COMPASS high p_T tuning
Results

- Assuming $A_{1}^{QCDC}(x_c) = A_{1}^{LP}(x_{Bj})$ for $x_c = x_{Bj}$
- $\Delta g/g = 0.113 \pm 0.038 \pm 0.035$
 - $\langle Q^2 \rangle \approx 3(\text{GeV}/c)^2$, $\langle x_g \rangle \approx 0.10$
- Best combined uncertainty
- Good statistic \rightarrow 3 x_g bins
- First direct measurement of a positive $\Delta g/g$
Summary

- New measurement of A_1^P and g_1^P at 200 GeV/c
 - NLO QCD fit of world data
 - Update on the Bjorken sum rule from COMPASS data only
- Extraction of ΔG in LO
 - Reanalysis of COMPASS deuteron data
 - New method to extract $\Delta g/g$
 - Reduction of statistical and systematic uncertainties
 - Positive value of $\Delta g/g$ measured