HADRON PHYSICS at the 1 GeV SCALE
and its IMPACT
— with an eye on MAMI —

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Supported by DFG, SFB/TR-16
and by EU, QCDnet
and by BMBF 06BN411
and by HGF VIQCD VH-VI-231

CONTENTS

• Introduction & motivation

• Remarks on isospin violation

• Isospin-breaking in the pion-nucleon scattering lengths

• Electromagnetic corrections to $\eta \rightarrow 3\pi$

• The cusp in $\eta' \rightarrow \eta \pi^0 \pi^0$

• Gauge-invariant chiral coupled-channel formulation of electromagnetic kaon production

• Mass splittings in heavy baryon multiplets

• Summary and outlook
Introduction
INTRODUCTORY REMARKS

• Many interesting facets/talks of/on hadron physics at GeV scales

• Here: concentrate on precision physics & its impact for MAMI

• Guiding theme: isospin violation in QCD

• A little history: MAMI’s biggest success = S-, P-wave LETs → story tbc
ISOSPIN VIOLATION

- Isospin violation has two sources (QCD + QED):

\[\mathcal{H}_{QCD}(x) = \frac{1}{2}(m_d - m_u)(\bar{d}d - \bar{u}u)(x) \]

\[\mathcal{H}_{QED}(x) = -\frac{1}{2}e^2 \int dy \, D^{\mu\nu}(x - y)T(j_\mu(x)j_\nu(y)) \]

\[\Rightarrow \text{unique window to quark masses for light quark and heavy-light quark systems} \]

- Both effects usually small and of the same size (e.g. \(m_p - m_n \))

\[\Rightarrow \text{systematic machinery must cope with both these accurately} \]

- Chiral perturbation theory w/ virtual photons is the tool to analyse the strictures of the spontaneously and explicitly broken chiral symmetry of QCD
Isospin breaking in the πN scattering lengths

WHY RECONSIDER IV in πN SCATTERING?

- high precision measurements of pionic hydrogen & deuterium at PSI
 ⇒ need better control of the isospin-breaking corrections

\[\begin{align*}
 &\text{Deuteron, no isospin breaking} \\
 &\text{Deuteron, isospin breaking at } O(p^2) \\
 &\text{Hydrogen energy, potential model} \\
 &\text{Hydrogen width, isospin breaking at } O(p^2) \\
 &- a^- \quad (M^{-1}_\pi) \\
 &- a^+ \quad (M^{-1}_\pi) \\
\end{align*} \]
NOVEL CALCULATION of the SCATTERING LENGTHS

- third order calculation in IR baryon CHPT with virtual photons
- largest uncertainty via electromagnetic LECs \(f_i, g_i \)
- pertinent loop graphs

\[(s_1) (s_2) (s_3) (s_4) (s_5) (s_6) (v_1) (v_2) (v_3) (v_4) (v_5) (a_1) (a_2) (a_3) \]

⇒ analytical results to \(\mathcal{O}(m_u - m_d, e^2) \)
TRIANGLE RATIO

- triangle ratio R vanishes in the isospin limit:

$$R = 2 \frac{a_{\pi + p} - a_{\pi - p} - \sqrt{2} a_{\pi - p}^{\text{cex}}}{a_{\pi + p} - a_{\pi - p} + \sqrt{2} a_{\pi - p}^{\text{cex}}}$$

- analytical expression including electromagnetic LECs:

$$R = \frac{m_p}{4\pi (m_p + M_\pi)} \left\{ \frac{e^2 f_2}{2} + \frac{g^2_A M_\pi \Delta_\pi}{4 F^2_\pi m_p} - \frac{M_\pi \Delta N}{4 F^2_\pi m_p} (1 + 2 g^2_A) - \frac{3 M_\pi \Delta_\pi}{16 F^2_\pi m^2_p} + \frac{M_\pi \Delta_\pi}{4 m^2_p} - B_{\text{thr}} \right\}$$

- analytical expression including electromagnetic LECs:

$$R = \frac{m_p}{4\pi (m_p + M_\pi)} \left\{ \frac{e^2 f_2}{2} + \frac{g^2_A M_\pi \Delta_\pi}{4 F^2_\pi m_p} - \frac{M_\pi \Delta N}{4 F^2_\pi m_p} (1 + 2 g^2_A) - \frac{3 M_\pi \Delta_\pi}{16 F^2_\pi m^2_p} + \frac{M_\pi \Delta_\pi}{4 m^2_p} - B_{\text{thr}} \right\}$$

$$\Delta_\pi = M^2_\pi - M^2_\pi 0, \quad \Delta N = m_n - m_p, \quad B_{\text{thr}} = \ldots$$
RESULTS for the SCATTERING LENGTHS

- relative changes w.r.t. the isospin limit

\[\text{Re}\Delta a(\pi^- p) = -3.9^{+4.9}_{-7.5}\% \text{, } \Delta a_{\pi^+ p} = +6.4^{+7.8}_{-5.1}\% \text{, } \Delta a_{\pi^- p} = -0.36 \pm 0.77\% \]

⇒ sizeable effect in elastic channels through triangle graph \((s_5)\)

- small IV in the triangle ratio at threshold

\[R = (1.5 \pm 0.2 f_2 \pm 0.03 a^- \pm 0.03 B^-_{\text{thr}} \pm 1.1 \text{LEC})\% = (1.5 \pm 1.1)\% \]

⇒ consistent with earlier results in heavy baryon CHPT above threshold

⇒ inconsistent with findings of Gibbs et al. and Matsinos at low pion momenta

- large IV in the yet unmeasured \(\pi^0 - p\) scattering length

\[\Delta a_{\pi^0 p} = (-5.2 \pm 0.2) \cdot 10^{-3}/M_\pi \gg a^+ \] ⇒ need a measurement
THE CUSP in E_{0+}

- Electric dipole amplitude: $E_{0+}(\omega) = -a - b\sqrt{1 - \omega^2/\omega_c^2}$

- Cusp parameter: $b = M_\pi a_{\pi^+ n}^{cex} E_{0+}^{\gamma p \rightarrow \pi^+ n} = (3.43 \pm 0.08) \cdot 10^{-3}/M_\pi$ [data] = $3.63 \cdot 10^{-3}/M_\pi$ [c.v. CHPT]

- But: large IV in the CEX $\Delta a_{\pi^+ n}^{cex} = (-1.9 \pm 0.8)\%$

- Better th’y analysis needed

- Measure precisely the polarized target asymmetry $T \propto \text{Im}[E_{0+}(P_3 - P_2)]$

\Rightarrow MAMI A2 proposal!

\[\text{Hadron Physics at the 1 GeV scale and its impact – with an eye at MAMI – Ulf-G. Mei\ss\ner – MAMI and beyond, Mainz, March 30, 2008} \]
Electromagnetic corrections to $\eta \rightarrow 3\pi$

ISOSPIN VIOLATION & $\eta \rightarrow 3\pi$

- Isospin violation drives $\eta \rightarrow 3\pi$, CHPT analysis:

\[
A(\eta \rightarrow \pi^+ \pi^- \pi^0) = A^{(2)} + A^{(4)} + \ldots
\]

\[
A^{(2)} = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_\pi^2} \left(1 + \frac{3(s-s_0)}{M_\eta^2 - M_\pi^2}\right)
\]

\[
\rightarrow \Gamma(\eta \rightarrow 3\pi) \sim Q^{-4}, \quad Q^{-1} = \frac{m_u - m_d}{m_s - \hat{m}}
\]

- worked out to tree, one- and two-loop accuracy
- large unitarity corrections (FSI)
 \rightarrow can be handled with dispersive machinery or UCHPT
- many testable predictions ($\Gamma(3\pi^0)/\Gamma(\pi^+ \pi^- \pi^0)$, Dalitz slopes)
- small em corrections at $\mathcal{O}(e^2 m_{\text{quark}})$, Baur, Kambor, Wyler
- but how about em corrections $\mathcal{O}(e^2(m_u - m_d))$?
NLO CONTRIBUTIONS

- strong and em diagrams

- full propagator

\[
\begin{align*}
\text{full propagator} &= \text{diagram 1} + \text{diagram 2} + \text{diagram 3} + \text{diagram 4} + \text{diagram 5}
\end{align*}
\]

- LECs: some strong L_i (known), some em K_i (dimensional analysis)
RESULTS: GENERAL REMARKS

• neutral and charged amplitudes must be calculated separately

\[A_n(s, t, u) \neq A_c(s, t, u) + A_c(t, u, s) + A_c(u, s, t) \]

• always compare to the strong one-loop amplitude of Gasser and Leutwyler (GL)

• EM corrections in general small (but need to be accounted for)

• corrections of order \(e^2(m_d - m_u) \) (DKM) as big (or bigger) as \(e^2m_q \) (BKW)

• Coulomb-pole at the edge of the physical region in the charged amplitude

• cusps in the neutral amplitude due to rescattering \(\pi^0\pi^0 \rightarrow \pi^+\pi^- \rightarrow \pi^0\pi^0 \)

• timely: WASA-at-COSY, CB at MAMI, . . .
AMPLITUDES for $\eta \rightarrow \pi^0 \pi^+ \pi^-$

- One-loop representation with em corrections: real and imaginary part
- uncertainties from varying the $K_i \rightarrow K_i \pm \frac{\Sigma_i}{16\pi^2}$ (hardly visible)
AMPLITUDES for \(\eta \rightarrow 3\pi^0 \)

- One-loop representation with em corrections: real and imaginary part

- Uncertainties from varying the \(K_i \rightarrow K_i \pm \frac{\Sigma_i}{16\pi^2} \)

GL BKW DKM
DALITZ PLOT for $\eta \rightarrow 3\pi^0$

- One-loop representation with em corrections: $\pi^+\pi^-$ cusp structures
NORM and DALITZ SLOPES for $\eta \rightarrow 3\pi^0$

- $|A_n(x, y)|^2 = |N_n|^2 \{1 + 2\alpha z + \ldots\}, \ z = x^2 + y^2$

| $|N_n|^2$ | $10^2 \times \alpha$ |
|----------|----------------|
| GL | 0.269 | 1.27 |
| BKW | -0.003 ± 0.002 | $+0.05 \pm 0.01$ |
| | $=(-1.1 \pm 0.9)\%$ | $(+3.7 \pm 0.5)\%$ |
| DKM | -0.009 ± 0.005 | -0.002 ± 0.01 |
| | $=(-3.3 \pm 1.8)\%$ | $(-0.2 \pm 1.0)\%$ |
| DKM(cusp)| -0.009 ± 0.005 | $+0.06 \pm 0.01$ |
| | $=(-3.3 \pm 1.8)\%$ | $(+5.0 \pm 1.1)\%$ |

DKM(cusp): region from the cusp outward excluded \Rightarrow no simple polynomial fit
NORM and DALITZ SLOPES for $\eta \rightarrow \pi^+\pi^-\pi^0$

- $|A_c(x, y)|^2 = |N_c|^2\{1 + ay + by^2 + dx^2 + fy^3 + gx^2y + ...\}$

| | $|N_c|^2$ | a | b |
|-------|----------|----------|----------|
| GL | 0.0325 | -1.279 | 0.396 |
| BKW | -0.0004 ± 0.0003 | -0.008 ± 0.001 | +0.006 ± 0.001 |
| | = (-1.1 ± 0.9)% | = (+0.6 ± 0.1)% | = (+1.4 ± 0.2)% |
| DKM | -0.0008 ± 0.0002* | -0.009 ± 0.005 | +0.006 ± 0.003 |
| | = (-2.4 ± 0.7*)% | = (+0.7 ± 0.4)% | = (+1.5 ± 0.7)% |
| | | | |
| d | 0.0744 | 0.0126 | -0.0586 |
| BKW | +0.0011 ± 0.0004 | -0.0003 ± 0.0001 | -0.0010 ± 0.0003 |
| | = (+1.5 ± 0.5)% | = (-2.2 ± 0.4)% | = (+1.7 ± 0.6)% |
| DKM | +0.0033 ± 0.0003* | +0.0001 ± 0.0001 | -0.0038 ± 0.0009* |
| | = (+4.4 ± 0.4*)% | = (+0.5 ± 0.6)% | = (+6.4 ± 1.5*)% |
The cusp in $\eta' \rightarrow \eta\pi\pi$

Kubis, Schneider, *in preparation*
AN INTRIGUING CUSP EFFECT

- Neutral pion–pion scattering at one-loop including isospin breaking
- Pion mass difference \sim induces a cusp in $\pi^0\pi^0 \rightarrow \pi^0\pi^0$ in the threshold region

Feynman graphs

Normalized scattering amplitude

\Rightarrow Long believed to be an unobservable curiosity
REOCCURRENCE OF THE CUSP IN $K \rightarrow 3\pi$

- Rescattering graph in $K^+ \rightarrow \pi^+ \pi^0 \pi^0$:
 - gives access to the $\pi\pi$ S-wave scattering lengths $a_0 - a_2$
 - $\pi^0 \pi^0$ inv. mass distribution $d\Gamma/dM_{\pi\pi}$ sensitive to $a_0 - a_2$

 \[
 a_0 - a_2 = \frac{0.265}{M_{\pi^+}} \quad a_0 - a_2 = 0
 \]

- Large data sample from NA 48 @ CERN, $\sim 10^8$ events

- Two-loop rescattering contributions:
 - Systematic EFT approach w/ kin. energy resummations and systematic electromagnetic corrections

\[
\]

\[
\Rightarrow \text{promising alternative to extract } a_0 \text{ and } a_2
\]

\[
\Rightarrow a_0 - a_2 = 0.273 \pm 0.005_{st} \pm 0.002_{sy} \pm 0.001_{ex}
\]
\[
a_2 = -0.065 \pm 0.015_{st} \pm 0.010_{sy} \pm 0.002_{ex}
\]
THE CUSP IN $\eta' \rightarrow \eta \pi^0 \pi^0$

- NREFT calculation to two loops
- input: $\pi \pi$ and $\pi \eta$ scattering parameters
 - $\pi \pi$ from Roy equations
 - $\pi \eta$ from CHPT w/ large uncertainties
- match EFT parameters to the
 Dalitz plot parameters from VES
 assuming isospin invariance

⇒ cusp reduces the number of events in the pertinent s_3 region by 8%

compare: 13% for $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ and 2% for $\eta \rightarrow 3\pi^0$

⇒ should be measured at COSY and MAMI!
Gauge-invariant calculation of kaon photo- and electroproduction on the proton

REMARKS on UNITARIZED CHPT

• valuable tool for chiral SU(3) dynamics pioneered at Munich and Valencia
 Kaiser, Siegel, Weise, Oset, Ramos, Oller, . . .

• advantages:
 ★ incorporates strict (coupled-channel) unitarity
 ★ allows to go above threshold in scattering and production
 ★ allows to deal with resonances like e.g. the $\Lambda(1405)$
 ★ gives insight into the nature of resonances/bound states/. . .

• disadvantages:
 ★ gives up some of the rigor of CHPT (power counting)
 ★ crossing symmetry violated (perturbatively restored)
 ★ gauge invariance often violated (in most meson em production calcs)

• this talk: reconcile coupled-channel unitarity with gauge invariance
THEORETICAL FRAMEWORK

- BSE for $\phi B \rightarrow \phi B$ with the Weinberg-Tomozawa interaction

$$V^{b_j,a_i}(q_2, q_1) = g^{b_j,a_i}(q_1 + q_2)$$
$$g^{b_j,a_i} = -\frac{1}{4F_\phi^2} \langle \lambda^{b\dagger}[[\lambda^{j\dagger}, \lambda^i], \lambda^a]\rangle$$

- Integral equation for photo/electroproduction

$$\mathcal{M}_\mu(q, k; p) = \mathcal{M}_0^\mu(q, k; p) + \int \frac{d^4l}{(2\pi)^4} \mathcal{T}(q, l; p)iS(\psi - l)\Delta(l)\mathcal{M}_0^\mu(l, k; p)$$

- Turtle approximation for the dressed meson-baryon vertex

$$V^{b_i,a} = \not\!q \gamma_5 \hat{g}^{b_i,a} /\sqrt{2}$$
$$\hat{g}^{b_i,a} = -\frac{D}{F_\phi} \langle \lambda^{b\dagger} \{\lambda^{i\dagger}, \lambda^a\}\rangle - \frac{F}{F_\phi} \langle \lambda^{b\dagger} [\lambda^{i\dagger}, \lambda^a]\rangle$$

$$\Gamma(q, p) = \not\!q \gamma_5 \hat{g} + \int \frac{d^4l}{(2\pi)^4} \mathcal{T}(q, l; p)iS(\psi - l)\Delta(l)l\gamma_5 \hat{g}$$

\Rightarrow 6 channels: $\gamma^* p \rightarrow p\pi^0, n\pi^+, p\eta, \Lambda K^+, \Sigma^0 K^+, \Sigma^+ K^0$
GAUGE-ININVARIANT PRODUCTION AMPLITUDE

- Classes of diagrams for $\gamma^* p \rightarrow KB$ in the turtle approximation

\[
k^{\mu} M_{\mu} = k^{\mu} \left(M^{A}_{\mu} + M^{B}_{\mu} + M^{C}_{\mu} + M^{D}_{\mu} + M^{E}_{\mu} + M^{F}_{\mu} + M^{G}_{\mu} + M^{H}_{\mu} \right) = 0
\]
FIT STRATEGY

• simultaneous description of hadron- and photon-induced differential XS

\[\pi^- p \rightarrow K^0 \Lambda, K^0 \Sigma^0 \quad \& \quad \gamma p \rightarrow K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+ \]

• mostly S-waves

\rightarrow \text{restrict to } q^{\text{lab}}_{\pi} \leq 1.23 \text{ GeV and } k^{\text{lab}}_{\gamma} \leq 1.25 \text{ GeV (} \sqrt{s} \leq 1.8 \text{ GeV)}

• use relativistic kinematics \rightarrow \text{some contributions from higher partial waves}

• fit parameters:

\begin{itemize}
 \item meson decay constants (to account for SU(3) breaking)
 \[F_\pi, F_K, F_\eta \]
 \item scales in the loop integrals (or subtraction constants)
 \[\mu_{\pi N}, \mu_{\eta N}, \mu_{K \Lambda}, \mu_{K \Sigma} \]
\end{itemize}

\Rightarrow \text{not yet a very quantitative approach}
PION-INDUCED STRANGENESS PRODUCTION

\[\frac{d\sigma}{d\Omega}(\pi^- p \rightarrow K^0 \Lambda)[\mu b/sr] \]

\[\frac{d\sigma}{d\Omega}(\pi^- p \rightarrow K^0 \Sigma^0)[\mu b/sr] \]

Knasel et al., Phys. Rev. D 11 (1975) 1

Knasel et al., Phys. Rev. D 11 (1975) 1
• $d\sigma/d\Omega(\gamma p \rightarrow K^+\Lambda)[\mu b/sr]$
In many calculations, only $A+F$ ($WT + FSI$) is used [no parameter refitting].

$\frac{d\sigma}{d\Omega} (\gamma p \rightarrow K^+\Lambda, K^+\Sigma^0)[\mu b/sr]$ [1.628 GeV]

$\sigma_{tot} (\gamma p \rightarrow K^+\Lambda, K^+\Sigma^0)[\mu b]$ [1.628 GeV]

\Rightarrow readjustment of the parameters not advisable (large effects)
In many calculations, only S-waves in the kernel & external kinematics are used.

⇒ not applicable for differential XS or polarisation observables.
Mass splittings in heavy baryon multiplets

INTRA-MULTIPLETT SPLITTINGS

- *up* quarks are lighter than *down* quarks:

 \[m_u = 1.5 - 3.3 \text{ MeV}, \quad m_d = 3.5 - 6.0 \text{ MeV} \quad \text{[using MS at } \mu = 2 \text{ GeV]} \]

 \[\Rightarrow \text{the more } \text{down} \text{ quarks in a state, the heavier a state in a multiplet is} \]

 e.g. \[n(udd) > p(uud), \quad K^0(d\bar{s}) > K^+(u\bar{s}), \ldots \]

- stunning exception: \[\Sigma^{++}_c (cuu) > \Sigma^0_c (cdd) > \Sigma^+_c (cud) \]

 \[2454.0 \pm 0.2 \quad 2453.8 \pm 0.2 \quad 2452.9 \pm 0.6 \text{ MeV} \]

- natural order restored for the bottom cousins: \[\Sigma^-_b (bdd) > \Sigma^+_c (buu) \]

 \[5815.2 \pm 2.0 \quad 5807.8 \pm 2.7 \text{ MeV} \]

how do these patterns arise? heavy quark symmetry?
EFFECTIVE LAGRANGIAN at TREE LEVEL

• basic ingredients:

 Goldstone boson octet, symm. sextet and anti-symm. triplet in SU(3)

 \[
 \phi = \begin{pmatrix}
 \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta \\
 \pi^- \\
 K^-
 \end{pmatrix} - \begin{pmatrix}
 \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta \\
 \pi^+ \\
 K^0
 \end{pmatrix} - \begin{pmatrix}
 \frac{1}{\sqrt{6}} \eta \\
 \eta \\
 -\frac{2}{\sqrt{6}} \eta
 \end{pmatrix},
 \]

 \[
 B_{6c} = \frac{1}{\sqrt{2}} \begin{pmatrix}
 \sqrt{2} \Sigma_{c}^{++} \\
 \Sigma_{c}^{+} \\
 \Xi_{c}^{'+}
 \end{pmatrix} + \begin{pmatrix}
 \Sigma_{c}^{+} \\
 \sqrt{2} \Sigma_{c}^{0} \\
 \Xi_{c}^{0}
 \end{pmatrix} + \begin{pmatrix}
 \Xi_{c}^{'+} \\
 \Xi_{c}^{0} \\
 \sqrt{2} \Omega_{c}^{0}
 \end{pmatrix},
 \]

 \[
 B_{3c} = \begin{pmatrix}
 0 & \Lambda_{c}^+ & \Xi_{c}^+ \\
 -\Lambda_{c}^+ & 0 & \Xi_{c}^0 \\
 -\Xi_{c}^+ & -\Xi_{c}^0 & 0
 \end{pmatrix}.
 \]

• construction of the effective Lagrangian: non-linear \(SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \)

• isospin splittings through quark masses and virtual photons \(\rightarrow \) well behaved

• technology developed in the late 90ties at IKP-3 \(\text{Fettes, M., Müller, Steininger, \ldots} \)

• same for \textit{bottom} cousins \((c \rightarrow b) \)
EFFECTIVE LAGRANGIAN at TREE LEVEL cont’d

- symmetry breaking terms at order p^2 as in the pion-nucleon case!

\[\mathcal{L}_{\text{str.}}^{(2)} = -\langle \bar{B}_Q (\alpha_1 \chi_+ + \alpha_2 \langle \chi_+ \rangle) B_Q \rangle \]

\[\mathcal{L}_{QQ}^{(2)} = -F_\pi^2 \langle \bar{B}_6 Q [\beta_0 (Q_+^2 - Q_-^2) + \beta_1 Q_+ \langle Q_+ \rangle + \beta_2 \langle Q_+^2 - Q_-^2 \rangle \\
+ \beta_3 \langle Q_+^2 + Q_-^2 \rangle] B_6 Q \rangle - F_\pi^2 \beta_4 \langle Q_+^T \bar{B}_6 Q + B_6 Q \rangle \]

- new symmetry breaking term at order p^2

\[\mathcal{L}_{\text{em}}^{(2)} = \mathcal{L}_{QQ}^{(2)} - F_\pi^2 \beta_{1h} \langle \bar{B}_6 Q_+ \langle q_h \parallel \rangle B_6 Q \rangle \]

- physics behind this new term: static heavy quark charge q_h

\[Q_B = 2Q + q_h \parallel = \begin{cases}
 e \cdot \text{diag} \{2, 0, 0\}, & \text{for the charm baryons,} \\
 e \cdot \text{diag} \{1, -1, -1\}, & \text{for the bottom baryons,}
\end{cases} \]
LOWEST ORDER MASS SPLITTINGS

• mass splittings at order p^2

\[
\left(m_{\Sigma_c^+} - m_{\Sigma_c^0} \right)^{(2)} = 2\alpha_1 B_0 (m_u - m_d) + \frac{1}{6} F^2 \pi e^2 (\beta_0 - 2\beta_4 + 6\beta_{1h})
\]

\[
\left(m_{\Sigma_c^{++}} - m_{\Sigma_c^0} \right)^{(2)} = 4\alpha_1 B_0 (m_u - m_d) + \frac{1}{3} F^2 \pi e^2 (\beta_0 + \beta_4 + 6\beta_{1h})
\]

\[
\left(m_{\Xi_c^+} - m_{\Xi_c^0} \right)^{(2)} = 2\alpha_1 B_0 (m_u - m_d) + \frac{1}{6} F^2 \pi e^2 (\beta_0 - 2\beta_4 + 6\beta_{1h})
\]

\[
\Rightarrow \left(m_{\Xi_c^+} - m_{\Xi_c^0} \right) = \left(m_{\Sigma_c^+} - m_{\Sigma_c^0} \right) + \mathcal{O}(p^3)
\]

• experiment

\[-0.9 \pm 0.4 \quad - 2.3 \pm 4.2 \quad \text{MeV}\]

• good starting point, need to know the corrections
LEADING LOOP CORRECTIONS

- pion-baryon loops at order p^3
- no photon-baryon loops at order p^3
- resulting isospin splittings

\[m_{\Sigma_c^+} - m_{\Sigma_c^0} = \Delta^{(2)}_{1c} + \Delta^{\text{loop}}_{1c}(m_{\Sigma_c}, m_{\Lambda_c}) + \mathcal{O}(p^4) \]

\[m_{\Sigma_c^{++}} - m_{\Sigma_c^{0}} = \Delta^{(2)}_{2c} + \mathcal{O}(p^4) \]

\[m_{\Xi_c'^+} - m_{\Xi_c'^0} = \Delta^{(2)}_{1c} + \mathcal{O}(p^4) \]

- loop function depends on 3 unknown LECs \(\rightarrow \) need three splittings as input
- symmetry breaking LECs come out of *natural size*
- extend to the *bottom* sector utilizing heavy quark symmetry (axial couplings)
PREDICTIONS and more

• We predict:

\[m_{\Xi'_c} - m_{\Xi'_c}^0 = m_{\Sigma'_c} - m_{\Sigma_c}^0 - \Delta_{1c}^{\text{loop}} = -0.2 \pm 0.6 \text{ MeV} \ [-2.3 \pm 4.2] \]

\[m_{\Sigma_b^0} = \frac{1}{2} \left(m_{\Sigma_b^+} + m_{\Sigma_b^-} - \tilde{\beta}_4 \right) + \Delta_{1b}^{\text{loop}} = 5810.3 \pm 1.9 \text{ MeV} \]

\[m_{\Xi'_b} - m_{\Xi'_b}^0 = \frac{1}{2} \left(m_{\Sigma_b^+} - m_{\Sigma_b^-} - \tilde{\beta}_4 \right) = -4.0 \pm 1.9 \text{ MeV} \]

• Explanation for the ordering:

The heavy-light photon exchange has a different sign for the charm and the bottom baryons. It is the interference of this term with the others that drives the behavior of the \(\Sigma_c \) iso-triplet. Also seen in D-meson splittings.
SUMMARY & OUTLOOK

• Big potential for precision physics at MAMI = important QCD tests
 → photoproduction ↔ pion-nucleon scattering lengths
 → precision determination of $a(\pi^+ n \rightarrow \pi^0 p)$
 → the $\pi^0 p$ scattering length is in reach
 → precision physics in η decays
 → the cusp in $\eta' \rightarrow \eta\pi\pi$

• SU(3) chiral dynamics tests in kaon photoproduction
 → e.g. two-pole nature of the $\Lambda(1405)$

• Same methodology also useful in heavy-light systems

⇒ do not miss these great opportunities!