Baryon Spectroscopy at ELSA

R. Beck, University Bonn

MAMI and Beyond, 30.3-3.4, 2009, Mainz

- Motivation
- Crystal Barrel experiment
- Recent Results
- Summary and Outlook

supported by the DFG within the SFB/TR16
Introduction

Experiments at ELSA, Jlab and MAMI to determine the Nucleon properties:

electron scattering:

\[e^- + N \rightarrow e^- + N \]

(schematic view)

Nucleon properties to be measured

- μ magnetic moment
- $\langle r^2 \rangle$ radius (elect. -, mag. -, axial) form factor
- α, β, γ_i polarizabilities + form factor
- M^* excitation spectrum
- μ^* transition moment + form factor
- $A_{1/2}, A_{3/2}, S_{1/2}$ helicity amplitude

ELSA: focus on excitation spectrum
Introduction

- 3.2 GeV photon beam at ELSA used to study meson photoproduction

Breit Wigner Resonances

Total Photon Absorption Cross Section

Spectroscopic Notation

\[X = S(l_{\pi} = 0); P(l_{\pi} = 1); \ldots \]
PDG 2008: Status on nucleon resonances

only 7 N^* and 5 Δ^*

established in the region $1400 \text{ MeV} < W < 2000 \text{ MeV}$

- Energy pattern for the dominant states
 - Constituent Quark Models
 - Dynamical Models
 - Lattice QCD

- Various nucleon models predict many more states
 - weak coupling to πN final state
 - insufficient data base
Experimental program for N

Common effort at ELSA, JLab and MAMI,

- Precision data for different final states \((p\pi^0, p\pi^0\pi^0, p\eta,)\)
- Polarization experiments (beam, target and recoil)
 “complete experiment”

\[
\begin{align*}
\gamma + p &\rightarrow X \\
\gamma + p &\rightarrow p + \pi^- + \pi^+ \\
\gamma + p &\rightarrow p + \pi^0 + \pi^0 \\
\gamma + p &\rightarrow p + \pi^0 \\
\gamma + p &\rightarrow K^+ + \Lambda \\
\gamma + p &\rightarrow p + \eta
\end{align*}
\]
Complete Experiment

\[\gamma + N \rightarrow N + \pi \]

8 well chosen observable have to be measured to determine the production amplitudes \(F_1, F_2, F_3 \) and \(F_4 \)

- \(\pi \)- threshold until \(\Delta^{+}(1232) \)- region

additional constraints:

(a) s- and p- wave approximation

(b) Fermi- Watson theorem

\[\gamma + N \rightarrow N + \pi \quad \text{same } I, J \text{ in the final state} \]
\[\pi + N \rightarrow N + \pi \quad \Rightarrow \text{same scattering phase } \delta_{IJ} \]

two observable sufficient for “complete experiment”

- differential cross section : \(d\sigma/d\Omega \)
- beam asymmetry : \(\Sigma \)

 success of MAMI B

- above \(\pi\pi \)- threshold

 Fermi- Watson theorem not valid any more

 More observable needed to find unique partial wave solution
Observables in Meson Photoproduction

<table>
<thead>
<tr>
<th>Photon polarization</th>
<th>Target polarization</th>
<th>Recoil nucleon polarization</th>
<th>Target and recoil polarizations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$X\ Y\ Z_{(\text{beam})}$</td>
<td>$X'\ Y'\ Z'$</td>
<td>$X'\ X'\ Z'\ Z'$</td>
</tr>
<tr>
<td>unpolarized</td>
<td>σ</td>
<td>$-\ P$</td>
<td>$T_x\ L_x\ T_z\ L_z$</td>
</tr>
<tr>
<td>linear</td>
<td>Σ</td>
<td>$H\ (-P)\ G$</td>
<td>$(-L_z)\ (T_z)\ (L_x)\ (-T_x)$</td>
</tr>
<tr>
<td>circular</td>
<td>$-\ F\ -\ E$</td>
<td>$O_x\ (-T)\ O_z$</td>
<td>$C_x\ -\ C_z$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Data only for:
- Differential cross section: σ
- Beam asymmetry: Σ
- Double polarization: E

Sensitive to: $\text{Re}(P_1 \cdot P_2)$

Data needed for:
- Target asymmetry: T
- Recoil polarization: P
- Double polarization: G

Sensitive to: $\text{Im}(P_1 \cdot P_2)$

Crystal Barrel experiment at ELSA: polarized photons, polarized targets and 4π acceptance
Crystal Ball experiment at MAMI: polarized photons, polarized targets and 4π acceptance
Electron Stretcher Accelerator (ELSA)

booster synchrotron
0.5 - 1.6 GeV

stretcher ring
0.5 - 3.5 GeV

detector tests
(under construction)
Crystal Barrel Set Up at ELSA

Diagram showing the components of the setup:
- Polarized Target
- Gas-Cherenkov
- TAPS
- Forward Detector
- Crystal Barrel + Inner detector
- Goniometer
- Tagging system
- Photon intensity monitor
- Beam Dump
Crystal Barrel Set Up at ELSA

- Crystal Barrel detector
 1230 CsI crystals

- Inner-detector
 cylinder of 513 scintillating fibers

- forward detector (FWPlug)
 90 CsI crystals with PM’s, 12°-30°

- forward detector (MiniTAPS)
 216 BaF₂, 1°-12°

Close to 4π coverage
Polarized Photons

Linearly polarized photons:
- coherent bremsstrahlung
- diamond radiator

Circularly polarized photons:
- longitudinally polarized electrons
- helicity transfer to photon

High polarization at low photon energies: \(p_{\gamma}^{\text{Lin}} = 70\% \)

High polarization at high photon energies: \(p_{\gamma}^{\text{Cir}} = 65\% \)

(H. Eberhard) (S. Kammer)
Polarized Target

„Frozen Spin Target“

horizontal cryostat with integrated solenoid to freeze up the spin

Target: Butanol (C$_4$H$_9$OH)

Polarization: DNP at high B-field (2.5 T) „freeze“ up the spin (0.4 T) relaxation time T~500h

Bonn: H. Dutz, S. Goertz
Bochum: W. Meyer, S. Reichertz
Polarized Target

Running time over 2500 hours in year 2008

High. polarization
\[P_+ = 83.4\% \]
\[P_- = -80.9\% \]

fast build-up
05h04min (May/June)
05h39min (August)

Pol.-time
06h10min

horizontal cryostat in experimental area

data taking
Polarization Observables

\[\bar{\gamma} \bar{p} \rightarrow p \pi^0 \]

Linearly polarized photons: \(p_{\gamma}^{Lin} \)
Circularly polarized photons: \(p_{\gamma}^{Cir} \)
Longitudinally polarized protons: \(p_z \)

\[
\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{Lin} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{Lin} p_z G \cdot \sin(2\phi) + p_{\gamma}^{Cir} p_z E \right)
\]

Linearly polarized photons \(\rightarrow \) beam asymmetry \(\Sigma \)
Circularly polarized photons \(\rightarrow \) double polarization asymmetry \(E \)
Longitudinally polarized protons \(\rightarrow \) double polarization asymmetry \(G \)

Crystal Barrel experiment at ELSA: New preliminary results for \(G \) and \(E \)
Meson photoproduction

\(\tilde{\gamma} + p \rightarrow p + \eta \)

Photon helicity couplings: \(A_{1/2} \) and \(A_{3/2} \)

- \(S_{11}(1535) \): \(A_{1/2} (S_{11}(1535)) \) only
- \(D_{13}(1520) \): \(A_{1/2} (D_{13}(1520)) \) and \(A_{3/2} (D_{13}(1520)) \)
- \(P_{13}(1720) \): \(A_{1/2} (P_{13}(1720)) \) and \(A_{3/2} (P_{13}(1720)) \)

Total cross section:
\[
\sigma_{\text{tot}} \sim |A_{1/2}(S_{11})|^2 + |A_{1/2}(P_{13})|^2 + |A_{3/2}(P_{13})|^2 + \ldots
\]

Crystal Barrel/TAPS Results

Beam asymmetry: \[\Sigma \]
\[\vec{\gamma} + p \rightarrow p + \eta \]

Higher sensitivity because of interference between different resonance contributions
\[\Sigma \sim A_{1/2}(S_{11}) \ast A_{1/2}(P_{13}) + \ldots. \]

D. Elsner et al., EPJ A33 (2007) 147
Helicity dependent total cross section

reaction: \(\vec{\gamma} + \vec{p} \rightarrow X \)

circularly polarized photons
longitudinally polarized proton

Helicity dependent total cross section

![Graph showing helicity dependent total cross section with data points for different energies and labels for unpolarized and polarized H (PDG) data.]

- **unpolarisierter \(^1\)H (PDG):**
 - GDH-MAMI: 0.8 GeV
 - GDH-ELSA: 1.0 GeV
 - GDH-ELSA: 1.4 GeV
 - GDH-ELSA: 1.9 GeV
 - GDH-ELSA: 2.4 GeV
 - GDH-ELSA: 2.9 GeV

reaction: $\vec{\gamma} + \vec{p} \rightarrow p + \pi^0$

circularly polarized photons
longitudinally polarized proton

count rate difference
preliminary acceptance correction

Preliminary results (M. Gottschall)

$N_{1/2} - N_{3/2}$

$P_{33}(1232)$
$S_{11}(1535)$
$F_{15}(1680)$
+\ldots

$|\sigma_{1/2} - \sigma_{3/2}|$
Helicity dependent cross section

reaction: $\gamma + \bar{p} \rightarrow p + \pi^0$

Angular distributions sensitive to interference between resonances

Preliminary results (M. Gottschall)
Helicity dependent cross section

reaction: \(\vec{\gamma} + \vec{p} \rightarrow p + \eta \)

circularly polarized photons
longitudinally polarized proton

Preliminary results (M. Gottschall)

\(N_{1/2} - N_{3/2} \)
Helicity dependent cross section

reaction: \(\vec{\gamma} + \vec{p} \rightarrow p + \eta \)

Preliminary results (M. Gottschall)

\[N_{1/2} - N_{3/2} \]

count rate difference
Helicity dependent cross section

reaction: $\gamma^- + p \rightarrow p + \pi^0 + \pi^0$

circularly polarized photons
longitudinally polarized proton

Preliminary results (D. Piontek)
Polarization Observables

\[\gamma \, \vec{p} \rightarrow p \, \pi^0 \]

- Linearly polarized photons: \(p_{\gamma}^{\text{Lin}} \)
- Circularly polarized photons: \(p_{\gamma}^{\text{Cir}} \)
- Longitudionally polarized protons: \(p_z \)

\[
\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{\text{Lin}} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{\text{Lin}} p_z G \cdot \sin(2\phi) + p_{\gamma}^{\text{Cir}} p_z E \right)
\]

G-measurement: linearly pol. photons and long. pol. Target

1.) Coherent peak at 600 MeV, \(\gamma \, \vec{p} \rightarrow p \, \pi^0 \)
 interference between P33(1232) and P11(1440)

2.) Coherent peak at 1100 MeV, \(\gamma \, \vec{p} \rightarrow p \, \pi^0 \) and \(\gamma \, \vec{p} \rightarrow p \, \eta \)
 interference between P13(1720), P11(1710) and D13(1520)

3.) Coherent peak at 1700 MeV, \(\gamma \, \vec{p} \rightarrow p \, \pi^0 \) and \(\gamma \, \vec{p} \rightarrow p \, \eta \)
 interference between P13(1720), P11(1710) and D15(2070)
Double Polarization Experiment for G

reaction: $\vec{\gamma} + \vec{p} \rightarrow p + \pi^0$

\[
\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{\text{Lin}} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{\text{Lin}} p_z G \cdot \sin(2\phi) \right)
\]

first online spectra with

- linearly polarized photons
- longitudinally polarized proton
Double Polarization Experiment for G

\[
\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{Lin} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{Lin} p_{z} G \cdot \sin(2\phi) \right)
\]

reaction: $\vec{\gamma} + \vec{p} \rightarrow p + \pi^{0}$

linearly polarized photons
longitudinally polarized proton

Clear effect from G observed
G-Asymmetry for pπ₀

reaction: \(\vec{\gamma} + \vec{p} \rightarrow p + \pi^0 \)

missing mass cut
fit to the \(\phi \)-distribution

\[
\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{Lin} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{Lin} p_z G \cdot \sin(2\phi) \right)
\]

- Preliminary results CB (A. Thiel)
- GRAAL data
Asymmetries for $p\pi^0$

reaction: $\vec{\gamma} + \vec{p} \rightarrow p + \pi^0$

linearly polarized photons
longitudinally polarized proton

Preliminary results
(A. Thiel)

GRAAL data

prediction
partial wave analysis

- BoGa
- SAID
- MAID
Asymmetries for $p\pi^0$

reaction: $\bar{\gamma} + \bar{p} \rightarrow p + \pi^0$

- Preliminary results (A. Thiel)
- GRAAL data

BoGa
SAID
MAID

prediction
partial wave analysis
Asymmetries for $p\pi^0$

reaction: $\bar{\gamma} + \bar{p} \rightarrow p + \pi^0$

Preliminary results
(A. Thiel)

GRAAL data

prediction
partial wave analysis

- BoGa
- SAID
- MAID
Energy dependence

Beam-Asymmetry Σ at $\theta = 90$

- Red line: without P_{11} (1440)
- Blue line: without D_{13} (1520)
- Green line: without F_{15} (1680)

Double-Polarization-Asymmetry G at $\theta = 90$

Preliminary results
(A. Thiel)
Asymmetries for $p\eta$

reaction: $\gamma^- + \vec{p} \rightarrow p + \eta$

missing mass cut
fit to the ϕ-distribution

$$\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta) \left(1 - p_{\gamma}^{Lin} \Sigma \cdot \cos(2\phi) - p_{\gamma}^{Lin} p_z G \cdot \sin(2\phi) \right)$$
Asymmetries for $p\eta$

reaction: $\vec{\gamma} + \vec{p} \rightarrow p + \eta$

linearly polarized photons
longitudinally polarized proton

- Preliminary results (A. Thiel HK69.6)
- CB (D. Elsner)

- Partial wave analysis
- prediction

- BoGa
- SAID
- MAID
reaction: \(\gamma + \vec{p} \rightarrow p + \pi^0 \)

First round of double polarization experiments with CB at ELSA:
- Energy range for G: 600-1300 MeV
- Energy range for E: 500-2100 MeV

Future plans for CB at ELSA:
- Extend energy range to 3 GeV
- Transversally polarized target in preparation

Future plans for Crystal Ball at MAMI C:
- G: 150-800 MeV
- E: 150-1500 MeV
Summary

- First round of double polarization experiments with Crystal Barrel at ELSA
- Preliminary results for the double polarization observable G and E
- Aim: reach “complete” experiment
- Model independent partial wave analysis
- Will shed new light on the nucleon excitation spectrum
Nucleon Resonances

Pion-Production

\[\gamma + N \rightarrow N^* \rightarrow N + \pi \]

Eta-Production

\[\gamma + N \rightarrow N^* \rightarrow N + \eta \]

Kaon-Production

\[\gamma + N \rightarrow N^* \rightarrow K^+ + \Lambda \]

Problem: overlapping resonances
Polarization observable

ELSA and MAMI: polarized photons and polarized targets
\[
\gamma + p \rightarrow p + \eta
\]

Meson photoproduction

- \(\pi, \eta, \rho, \omega, K, \ldots\)
- \(N^*, N, N^*, \Delta, \Lambda, \Sigma\)

Photon helicity couplings:

- \(S_{11}(1535): A_{1/2}(S_{11}(1535))\) only
- \(D_{13}(1520): A_{1/2}(D_{13}(1520))\) and \(A_{3/2}(D_{13}(1520))\)

Total cross section:

\[\sigma_{\text{tot}} \sim |A_{1/2}(S_{11})|^2 + |A_{1/2}(D_{13})|^2 + |A_{3/2}(D_{13})|^2 + \ldots\]

V. Crede, O. Bartolomy et al.,
PRL 94 (2005) 012004,
EPJ A33 (2007) 133